基于磁彈效應(yīng)的傳感器的溫度補(bǔ)償方法研究
本文選題:磁彈效應(yīng)傳感器 + BP神經(jīng)網(wǎng)絡(luò)。 參考:《安徽理工大學(xué)》2017年碩士論文
【摘要】:橋梁的索力健康至關(guān)重要,它是大跨度橋梁的受力構(gòu)件最主要的一部分,對(duì)于索力的實(shí)時(shí)撿測一直是橋梁安全問題的核心之一;诖艔椥(yīng)的索力檢測是一種新型等優(yōu)點(diǎn)。目前,雖然已有基于磁彈效應(yīng)的索力傳感器應(yīng)用于實(shí)際的橋梁索力檢測,但是這種索力傳感器的研制和索力測量是基于大量實(shí)驗(yàn)數(shù)據(jù)的統(tǒng)計(jì)和分析,缺乏理論上對(duì)影響鋼纜索索力測量的磁化特性、應(yīng)力變化和溫度變化的系統(tǒng)分析。根據(jù)鐵磁材料的逆磁致伸縮效應(yīng),鐵磁材料在磁場中會(huì)被磁化,如果鐵磁材料受到外力(如拉力)的作用,那么材料的磁化參數(shù)(磁導(dǎo)率μ)同時(shí)將會(huì)發(fā)生改變,我們把該現(xiàn)象為磁彈效應(yīng)。磁彈效應(yīng)傳感器的原理是磁導(dǎo)率變化與索力存在對(duì)應(yīng)關(guān)系,通過測量磁導(dǎo)率變化就能得出索力。但磁導(dǎo)率可能會(huì)隨著溫度的變化而變化,此時(shí)將影響到傳感器的測量結(jié)果。因此,磁彈效應(yīng)傳感器測量結(jié)果受溫度的影響,對(duì)磁彈效應(yīng)傳感器進(jìn)行溫度補(bǔ)償是很有必要的。溫度影響磁彈索力傳感器索力監(jiān)測這一問題的研究尚不足,對(duì)于整個(gè)系統(tǒng)的溫度影響機(jī)理,以及合理有效的溫度控制措施,還需進(jìn)一步系統(tǒng)的深入研究。本文采用的是BP神經(jīng)網(wǎng)絡(luò)法和RBF神經(jīng)網(wǎng)絡(luò)法降低溫度的干擾,還原真實(shí)的受力信號(hào)。用MATLAB對(duì)BP網(wǎng)絡(luò)法和RBF神經(jīng)網(wǎng)絡(luò)法兩種溫度算法進(jìn)行仿真,并比較二者的補(bǔ)償效果。結(jié)果表明:提出了 BP神經(jīng)網(wǎng)絡(luò)法和RBF神經(jīng)網(wǎng)絡(luò)法對(duì)磁彈效應(yīng)傳感器進(jìn)行溫度補(bǔ)償,其中BP神經(jīng)網(wǎng)絡(luò)補(bǔ)償精度最高可達(dá)98%,補(bǔ)償效果較好,提高了磁彈傳感器的準(zhǔn)確性和穩(wěn)定性。
[Abstract]:The bridge's cable force health is very important, it is the most important part of the long-span bridge's mechanical components, and the real-time measurement of the cable force is always one of the key problems of bridge safety. The cable force detection based on magnetoelastic effect is a new type of cable force detection. At present, although the cable force sensor based on magnetoelastic effect has been applied to the actual bridge cable force detection, the development of the cable force sensor and the cable force measurement are based on the statistics and analysis of a large number of experimental data. There is no systematic analysis of the magnetization characteristics, stress changes and temperature changes affecting cable force measurement in theory. According to the inverse magnetostriction effect of ferromagnetic material, ferromagnetic material will be magnetized in the magnetic field. If the ferromagnetic material is subjected to external force (such as pull force), the magnetization parameter (permeability 渭) of the material will change at the same time. We refer to this phenomenon as a magnetoelastic effect. The principle of magnetoelastic effect sensor is that there is a corresponding relationship between the change of permeability and the cable force, and the cable force can be obtained by measuring the change of permeability. However, the permeability may vary with the change of temperature, which will affect the measurement results of the sensor. Therefore, the results of magnetoelastic effect sensor are affected by temperature, so it is necessary to compensate the temperature of magnetoelastic effect sensor. The research on the temperature effect of the magnetoelastic cable force sensor is not enough. The mechanism of temperature influence and the reasonable and effective temperature control measures need to be further studied. In this paper, BP neural network and RBF neural network are used to reduce the interference of temperature and to reduce the real force signal. Two temperature algorithms, BP network method and RBF neural network method, are simulated by MATLAB and their compensation effects are compared. The results show that BP neural network method and RBF neural network method are proposed to compensate the temperature of magnetoelastic effect sensor. The compensation accuracy of BP neural network is up to 98, and the compensation effect is good, which improves the accuracy and stability of magnetoelastic sensor.
【學(xué)位授予單位】:安徽理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U446
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 宋瑞娟;;基于改進(jìn)RBF神經(jīng)網(wǎng)絡(luò)的傳感器溫度補(bǔ)償系統(tǒng)研究[J];機(jī)械強(qiáng)度;2016年06期
2 徐順;盧文科;左鋒;;基于PSO-BP神經(jīng)網(wǎng)絡(luò)的光纖壓力傳感器溫度補(bǔ)償研究[J];儀表技術(shù)與傳感器;2016年10期
3 靖永志;何飛;張昆侖;;基于RBF神經(jīng)網(wǎng)絡(luò)和LS-SVM組合模型的磁浮車間隙傳感器溫度補(bǔ)償[J];電工技術(shù)學(xué)報(bào);2016年15期
4 馮志敏;邵磊;陳躍華;;磁彈效應(yīng)索力傳感器的差動(dòng)式溫度補(bǔ)償及試驗(yàn)研究[J];傳感技術(shù)學(xué)報(bào);2016年07期
5 張玲娜;馬安忠;;霍爾傳感器溫度補(bǔ)償方法分析研究[J];西部皮革;2016年10期
6 楊遂軍;康國煉;葉樹亮;;基于最小二乘支持向量機(jī)的硅壓阻式傳感器溫度補(bǔ)償[J];傳感技術(shù)學(xué)報(bào);2016年04期
7 陳寶偉;王學(xué)影;姚進(jìn)輝;郭斌;;應(yīng)變式負(fù)荷傳感器溫度補(bǔ)償研究[J];計(jì)算機(jī)測量與控制;2016年01期
8 張坤;張進(jìn);;基于線性加權(quán)免疫克隆算法的壓力傳感器溫度補(bǔ)償方法[J];測控技術(shù);2016年01期
9 邱恒明;陳東;李桂銀;黃勇;陳真誠;梁晉濤;;基于支持向量機(jī)的光尋址電位傳感器溫度補(bǔ)償研究[J];光電子·激光;2015年12期
10 沈棋棋;盧文科;;采用可變系數(shù)回歸的位移傳感器溫度補(bǔ)償[J];電子設(shè)計(jì)工程;2015年20期
相關(guān)碩士學(xué)位論文 前4條
1 孫艷梅;壓阻式壓力傳感器溫度補(bǔ)償方法研究[D];齊齊哈爾大學(xué);2012年
2 李金鋒;多晶硅納米膜壓力傳感器溫度補(bǔ)償技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2008年
3 張耀鋒;基于人工神經(jīng)網(wǎng)絡(luò)溫度補(bǔ)償?shù)膲毫鞲衅鞯臒o線數(shù)據(jù)采集系統(tǒng)[D];河北工業(yè)大學(xué);2007年
4 夏勇;壓阻式壓力傳感器溫度補(bǔ)償?shù)难芯颗c實(shí)現(xiàn)[D];西北工業(yè)大學(xué);2006年
,本文編號(hào):1870710
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1870710.html