基于聚類的城市交通路網(wǎng)分區(qū)和交通狀態(tài)判別
本文選題:聚類 + 路網(wǎng)分區(qū)。 參考:《北京交通大學(xué)》2017年碩士論文
【摘要】:近年來,隨著城市化水平的不斷提高,汽車保有量的不斷增加,交通擁堵、出行安全、環(huán)境污染等一系列問題漸漸凸顯。單純?cè)黾映鞘薪煌ɑA(chǔ)設(shè)施的做法不僅耗費(fèi)巨大的人力、物力,而且效果有限,因此如何對(duì)交通進(jìn)行有效的管理和控制,是智能交通系統(tǒng)的重要研究?jī)?nèi)容。城市交通路網(wǎng)是一個(gè)規(guī)模巨大的復(fù)雜非線性時(shí)變系統(tǒng),很難進(jìn)行統(tǒng)一的管理和控制。對(duì)城市路網(wǎng)進(jìn)行分區(qū)后,可以對(duì)每個(gè)子區(qū)域?qū)嵤┯嗅槍?duì)性的控制方案,使路網(wǎng)系統(tǒng)變得靈活、可靠,而且需要實(shí)時(shí)處理的數(shù)據(jù)量明顯減少,能夠滿足實(shí)時(shí)性的要求。本文選定望京區(qū)域作為研究對(duì)象,搭建VISSIM仿真平臺(tái),基于北京市浮動(dòng)車數(shù)據(jù)設(shè)置仿真平臺(tái)相關(guān)參數(shù),復(fù)現(xiàn)研究區(qū)域的通行情況。之后利用聚類算法對(duì)望京區(qū)域進(jìn)行分區(qū),并利用宏觀基本圖(Macroscopic Fundamental Diagrams,MFD)從定性和定量的角度對(duì)分區(qū)的結(jié)果進(jìn)行評(píng)價(jià)。本文的主要內(nèi)容如下:首先,只考慮速度和密度信息,用K均值(K-means)聚類算法對(duì)路網(wǎng)進(jìn)行分區(qū),然后加入路段的空間位置信息再次進(jìn)行分區(qū),并將兩種方法進(jìn)行了對(duì)比。聚類結(jié)果表明本文提出的考慮路段空間位置的分區(qū)方法效果更好。并利用分區(qū)后子區(qū)域的MFD對(duì)K-means算法的分區(qū)結(jié)果進(jìn)行評(píng)價(jià),而且通過MFD的擬合函數(shù),提出了一種衡量分區(qū)結(jié)果的標(biāo)準(zhǔn)。其次,使用改進(jìn)的模糊C均值(FuzzyC-means,FCM)聚類算法確定聚類類數(shù)和初始聚類中心,對(duì)望京區(qū)域路網(wǎng)進(jìn)行分區(qū)。利用分區(qū)后子區(qū)域的MFD評(píng)價(jià)改進(jìn)的FCM算法的分區(qū)結(jié)果,評(píng)價(jià)結(jié)果表明,與K-means算法的分區(qū)結(jié)果相比,改進(jìn)的FCM算法的分區(qū)結(jié)果更加理想。最后,用模糊綜合評(píng)價(jià)方法對(duì)子區(qū)域內(nèi)路段的交通狀態(tài)進(jìn)行判別,由此得出子區(qū)域內(nèi)部擁堵路段比例隨時(shí)間的變化情況,結(jié)合MFD的性質(zhì)提出了一種子區(qū)域擁堵的評(píng)價(jià)標(biāo)準(zhǔn)。對(duì)望京區(qū)域路網(wǎng)進(jìn)行動(dòng)態(tài)分區(qū),并分析了交通擁堵隨時(shí)間的變化情況,確定了關(guān)鍵路段。
[Abstract]:In recent years, with the continuous improvement of the urbanization level, a series of problems such as traffic congestion, traffic congestion, travel safety and environmental pollution have become increasingly prominent. The practice of increasing urban traffic infrastructure only takes huge manpower, material resources and limited effect, so how to manage and control traffic effectively, It is an important research content of intelligent transportation system. The urban traffic network is a large and complex nonlinear time-varying system, it is difficult to carry out unified management and control. After the zoning of the urban road network, it can carry out a targeted control scheme for each subregion, making the network system flexible, reliable, and need to be processed in real time. In this paper, the Wangjing area is selected as the research object, and the VISSIM simulation platform is set up. Based on the parameters of the simulation platform of the floating car in Beijing, the current situation of the research area is recounted. Then the clustering algorithm is used to partition the Wangjing region, and the macro basic map (Mac Roscopic Fundamental Diagrams, MFD) evaluates the results of the partition from a qualitative and quantitative perspective. The main contents of this paper are as follows: first, we only consider the speed and density information, partition the road network with the K mean (K-means) clustering algorithm, and then partition the spatial location information of the section again, and carry out the two methods. The clustering results show that the partition method considering the location of the section is better. And the partition results of the K-means algorithm are evaluated by the MFD of the subregion subregion, and a criterion to measure the partition results is proposed through the fitting function of the MFD. Secondly, the improved fuzzy C mean (FuzzyC-means, FCM) clustering is used. The algorithm determines the number of clustering classes and the initial cluster center to partition the Wangjing regional road network. The results of the improved FCM algorithm are evaluated using the MFD of the subregion. The results show that the result of the improved FCM algorithm is more ideal than the K-means algorithm. Finally, the fuzzy comprehensive evaluation method is used to the subregion. The traffic state of the inner section is judged, thus the change of the proportion of the congested sections in the subregion is obtained with the change of the time. According to the nature of the MFD, the evaluation standard of a seed area congestion is put forward. The dynamic zoning of the Wangjing regional road network is carried out, and the change of traffic congestion with the time is analyzed, and the key sections are determined.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U12
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 聶佩林;陳曉翔;佘錫偉;戴秀斌;;基于代價(jià)敏感神經(jīng)網(wǎng)絡(luò)的交通狀態(tài)判別[J];公路交通科技(應(yīng)用技術(shù)版);2011年03期
2 常麗君;;交通子區(qū)的狀態(tài)判別方法研究[J];價(jià)值工程;2010年26期
3 張蕓蕓;;基于模糊C均值聚類的交通狀態(tài)判別研究[J];鐵路計(jì)算機(jī)應(yīng)用;2013年04期
4 尹婧;高軍偉;王彬;冷子文;;城市交通狀態(tài)判別方法的研究[J];青島大學(xué)學(xué)報(bào)(工程技術(shù)版);2012年03期
5 漸猛;張俊友;;基于模糊綜合評(píng)價(jià)的道路交通狀態(tài)判別方法研究[J];山東理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年02期
6 傅惠;趙麗紅;胡剛;許倫輝;張建棟;;適于動(dòng)態(tài)導(dǎo)航系統(tǒng)的城市道路交通狀態(tài)判別[J];交通信息與安全;2009年02期
7 陳力;胡剛;;基于自適應(yīng)神經(jīng)模糊推理的交通狀態(tài)判別方法[J];西部交通科技;2010年05期
8 張英鋒;馬彪;朱愿;張金樂;;基于超球面支持向量機(jī)的綜合傳動(dòng)狀態(tài)判別[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2012年01期
9 錢U,
本文編號(hào):1864107
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1864107.html