超大跨度輕型組合梁懸索橋的溫度梯度效應(yīng)研究
本文選題:超大跨度懸索橋 + 輕型組合梁 ; 參考:《湖南大學(xué)》2015年碩士論文
【摘要】:隨著橋梁結(jié)構(gòu)形式的發(fā)展以及對(duì)材料的深入研究,組合結(jié)構(gòu)已經(jīng)在橋梁工程中得到了廣泛的應(yīng)用,這種結(jié)構(gòu)形式能充分發(fā)揮鋼結(jié)構(gòu)優(yōu)越的受拉性能以及混凝土良好的受壓性能。但傳統(tǒng)組合結(jié)構(gòu)中混凝土的厚度較大,隨著橋梁跨徑的增大,結(jié)構(gòu)的自重隨著增加,橋梁的跨越能力受到限制。當(dāng)采用連續(xù)梁橋時(shí)可能在上部混凝土中產(chǎn)生較大的拉應(yīng)力,使得混凝土出現(xiàn)裂縫,從而影響橋梁結(jié)構(gòu)的耐久性能和使用性能。故在本文中的研究中提出在超大跨度懸索橋上采用輕型組合梁結(jié)構(gòu),其主要的結(jié)構(gòu)形式是超高性能混凝土(UHPC)和正交異性鋼橋面板通過(guò)抗剪連接件組合在一起。由于UHPC具有強(qiáng)度高,耐久性好,收縮徐變小,體積穩(wěn)定性好的優(yōu)點(diǎn),將其與正交異性鋼橋面板組合,可以顯著降低結(jié)構(gòu)的自重,提高橋梁的跨越能力。這種組合結(jié)構(gòu)不僅提高了橋梁的整體受力性能,另一方面也增大了車輛輪載下正交異性板的局部受力性能。本文基于跨瓊州海峽的超大跨度懸索橋?qū)嵗?主要進(jìn)行了以下研究工作:(1)輕型組合梁的溫度梯度模擬:基于太陽(yáng)輻射以及結(jié)構(gòu)與外部環(huán)境之間的熱傳遞等理論,建立了日照作用下輕型組合梁橋結(jié)構(gòu)溫度場(chǎng)分析的第三類邊界條件,得出了輕型組合梁橋面板的溫度梯度。同時(shí)分析了瀝青鋪裝層對(duì)輕型組合梁溫度梯度的影響,最后對(duì)影響溫度梯度的主要參數(shù)進(jìn)行了分析。(2)超大跨度懸索橋主纜線形計(jì)算:結(jié)合具體的工程實(shí)例,分別采用解析法編程和有限元分析計(jì)算了懸索橋在成橋狀態(tài)下的主纜線形和主纜內(nèi)力,對(duì)比兩種計(jì)算結(jié)果可知,采用有限元進(jìn)行計(jì)算是可行的,故可以采用有限元分析進(jìn)行大跨度懸索橋的靜力計(jì)算。(3)輕型組合梁橋在超大跨度懸索橋上的靜力計(jì)算:通過(guò)有限元軟件,分別采用線性二階方法和非線性方法計(jì)算了輕型組合梁在超大跨度懸索橋上的靜力性能,兩種計(jì)算結(jié)果的對(duì)比表明采用計(jì)算更為簡(jiǎn)便的線性二階方法是可行。(4)輕型組合梁與傳統(tǒng)鋼箱梁方案的比選:將原橋方案即鋼箱梁上鋪瀝青混凝土方案與輕型組合梁方案進(jìn)行受力性能和經(jīng)濟(jì)性的對(duì)比,計(jì)算結(jié)果表明在超大跨度懸索橋上采用輕型組合梁更具優(yōu)勢(shì)。
[Abstract]:With the development of bridge structure and the further study of materials, composite structure has been widely used in bridge engineering, which can give full play to the excellent tensile performance of steel structure and the good compressive performance of concrete. However, the thickness of concrete in the traditional composite structure is large. With the increase of span, the weight of the structure increases, and the span capacity of the bridge is limited. When the continuous beam bridge is adopted, the tensile stress may be larger in the upper concrete, which will cause cracks in the concrete, thus affecting the durability and service performance of the bridge structure. So in the research of this paper, it is proposed that the light composite beam structure should be adopted on the super large span suspension bridge, the main structural form of which is UHPC) and orthotropic steel bridge panel is combined by shear joint. Because UHPC has the advantages of high strength, good durability, small shrinkage and creep, and good volume stability, combining it with orthotropic steel bridge panel can significantly reduce the weight of the structure and improve the span ability of the bridge. This kind of composite structure not only improves the overall mechanical performance of the bridge, but also increases the local mechanical behavior of orthotropic plates under vehicle wheel loads. Based on the example of super-span suspension bridge across Qiongzhou Strait, the temperature gradient simulation of lightweight composite beam is carried out as follows: based on the theory of solar radiation and heat transfer between structure and external environment. The third kind of boundary condition for temperature field analysis of light composite beam bridge under sunshine is established, and the temperature gradient of light composite beam bridge panel is obtained. At the same time, the influence of asphalt pavement on the temperature gradient of light composite beam is analyzed. Finally, the main parameters affecting the temperature gradient are analyzed. The main cable shape and the internal force of the main cable are calculated by using the analytical method and the finite element analysis respectively. Compared with the two calculation results, it is feasible to use the finite element method to calculate the suspension bridge. Therefore, finite element analysis can be used to calculate the static force of long-span suspension bridge. The static behavior of light composite beam on super-span suspension bridge is calculated by linear second-order method and nonlinear method, respectively. The comparison of two kinds of calculation results shows that it is feasible to use the simpler linear second-order method to calculate the light composite beam and the traditional steel box girder scheme: the original bridge scheme, that is, the steel box girder with asphalt concrete scheme and the light weight combination scheme, is compared with the traditional steel box girder scheme. The beam scheme is compared in terms of mechanical performance and economy. The calculation results show that it is more advantageous to adopt light composite beam in super long span suspension bridge.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U441;U448.25
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李香玲;;鋼橋面水泥混凝土-瀝青復(fù)合鋪裝結(jié)構(gòu)的溫度場(chǎng)分析[J];內(nèi)蒙古公路與運(yùn)輸;2013年02期
2 邵旭東;曹君輝;易篤韜;陳斌;黃政宇;;正交異性鋼板-薄層RPC組合橋面基本性能研究[J];中國(guó)公路學(xué)報(bào);2012年02期
3 張勁泉;曲兆樂(lè);宋建永;楊昀;;多塔連跨懸索橋綜述[J];公路交通科技;2011年09期
4 張玉平;楊寧;李傳習(xí);;無(wú)鋪裝層鋼箱梁日照溫度場(chǎng)分析[J];工程力學(xué);2011年06期
5 陳珊;孫繼銀;羅曉春;;目標(biāo)表面太陽(yáng)輻射特性研究[J];紅外技術(shù);2011年03期
6 陸文林;宋官保;;不同材料橋面鋪裝下混凝土箱梁的溫度場(chǎng)分析[J];交通科學(xué)與工程;2010年03期
7 閻培渝;;超高性能混凝土(UHPC)的發(fā)展與現(xiàn)狀[J];混凝土世界;2010年09期
8 逯彥秋;陳宜言;孫占琦;張肖寧;;鋼橋橋面鋪裝層的溫度場(chǎng)分布特征[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年08期
9 賀曉雷;于賀軍;李建英;丁蕾;;太陽(yáng)方位角的公式求解及其應(yīng)用[J];太陽(yáng)能學(xué)報(bào);2008年01期
10 逯彥秋;張肖寧;唐偉霞;;橋面鋪裝層溫度場(chǎng)的ANSYS模擬[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年02期
相關(guān)博士學(xué)位論文 前2條
1 彭友松;混凝土橋梁結(jié)構(gòu)日照溫度效應(yīng)理論及應(yīng)用研究[D];西南交通大學(xué);2007年
2 汪劍;大跨預(yù)應(yīng)力混凝土箱梁橋非荷載效應(yīng)及預(yù)應(yīng)力損失研究[D];湖南大學(xué);2006年
,本文編號(hào):1854927
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1854927.html