基于博弈論和模糊數(shù)學(xué)的橋梁風(fēng)險評價模型
發(fā)布時間:2018-05-04 01:41
本文選題:橋梁工程 + 博弈組合賦權(quán)。 參考:《公路工程》2017年01期
【摘要】:為克服單一風(fēng)險評價方法過于主觀或客觀的缺點(diǎn),文章首先基于博弈組合賦權(quán)法建立了橋梁工程風(fēng)險評價模型,從自然風(fēng)險、人為風(fēng)險、技術(shù)和結(jié)構(gòu)退化等風(fēng)險來源方面建立了風(fēng)險指標(biāo)評價體系,對各層風(fēng)險因素分別基于AHP、熵理論進(jìn)行主、客觀權(quán)重求解,兼顧專家的主觀意項(xiàng)和工程固有的客觀信息,基于博弈原理對風(fēng)險指標(biāo)的權(quán)重進(jìn)行組合賦權(quán);最后基于模糊數(shù)學(xué)法和最大隸屬度原理進(jìn)行了工程風(fēng)險等級評估。以某橋?yàn)槔?驗(yàn)證了模型的科學(xué)性。
[Abstract]:In order to overcome the disadvantages of the single risk evaluation method which is too subjective or objective, this paper first establishes a bridge engineering risk evaluation model based on the game combination weighting method, which is based on natural risk and artificial risk. Based on AHP and entropy theory, the risk index evaluation system is established in terms of technical and structural degradation and other risk sources. The subjective and objective weights of each risk factor are calculated, taking into account the subjective meaning of the expert and the inherent objective information of the project. Based on the game theory, the weight of the risk index is weighted, and the engineering risk grade is evaluated based on the fuzzy mathematics method and the principle of maximum membership degree. Taking a bridge as an example, the model is verified to be scientific.
【作者單位】: 太原科技大學(xué)交通與物流學(xué)院;
【基金】:山西省回國留學(xué)人員科研資助項(xiàng)目(2013-096) 山西省科技攻關(guān)資助項(xiàng)目(20120321023-05)
【分類號】:U447
【相似文獻(xiàn)】
相關(guān)期刊論文 前3條
1 李樹峰;;公路工程項(xiàng)目風(fēng)險評價模型探究[J];科技資訊;2012年04期
2 唐承鐵;;基于灰色關(guān)聯(lián)性理想解法的風(fēng)險評價模型[J];公路工程;2012年06期
3 ;[J];;年期
,本文編號:1841056
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1841056.html
教材專著