大跨度鋼—混組合梁斜拉橋地震反應(yīng)分析
本文選題:鋼混組合斜拉橋 + 索力優(yōu)化 ; 參考:《合肥工業(yè)大學(xué)》2017年碩士論文
【摘要】:本文以目前中國(guó)最大跨徑、最大聯(lián)長(zhǎng)的鋼混組合梁斜拉橋-望東長(zhǎng)江公路大橋?yàn)楣こ瘫尘?對(duì)其進(jìn)行恒載索力優(yōu)化、動(dòng)力特性分析、地震反應(yīng)分析,主要工作及結(jié)論如下:(1)總結(jié)鋼混組合梁斜拉橋的發(fā)展歷程,及其相較于鋼斜拉橋、混凝土斜拉橋的一些靜力、動(dòng)力方面良好受力性能。明確斜拉橋抗震分析意義,及關(guān)鍵影響因素?偨Y(jié)抗震計(jì)算的主要方法,并判斷能否適用于大跨徑斜拉橋計(jì)算分析,及計(jì)算結(jié)果是否有所局限。(2)在ANSYS中進(jìn)行結(jié)構(gòu)的離散,根據(jù)梁、塔、索各自不同的受力特點(diǎn)選擇對(duì)應(yīng)的單元類(lèi)型,建立全橋的有限元模型。(3)利用零位移法、最小彎曲應(yīng)變能法、一階優(yōu)化法對(duì)組合梁斜拉橋恒載索力進(jìn)行優(yōu)化分析,結(jié)果表明一階優(yōu)化法就線(xiàn)形、主梁、主塔內(nèi)力、拉索應(yīng)變分布方面均取得非常好的優(yōu)化效果。(4)建立墩底固結(jié)模型及集中質(zhì)量模型,對(duì)比分析樁土相互作用對(duì)結(jié)構(gòu)動(dòng)力特性的影響,計(jì)算結(jié)果表明,樁土相互作用對(duì)結(jié)構(gòu)有著顯著影響。(5)對(duì)斜拉橋進(jìn)行單獨(dú)的順橋向、橫橋向及與豎向地震共同作用下結(jié)構(gòu)的響應(yīng)進(jìn)行反應(yīng)譜分析,結(jié)果表明豎向地震對(duì)結(jié)構(gòu)順橋向地震的軸力、彎矩、位移均有較大的影響。(6)對(duì)斜拉橋進(jìn)行順橋向、橫橋向及于豎向地震共同作用下結(jié)構(gòu)響應(yīng)進(jìn)行非線(xiàn)性時(shí)程分析,結(jié)果表明順橋向地震反應(yīng)為半漂浮體系抗震設(shè)計(jì)關(guān)鍵因素,且要考慮豎向地震影響,結(jié)構(gòu)內(nèi)力、位移時(shí)程明顯表現(xiàn)出長(zhǎng)周期結(jié)構(gòu)的特征。(7)本文基于m法,將樁土相互作用等效為水平布置的彈簧,并就進(jìn)行時(shí)程分析研究了其對(duì)地震響應(yīng)的影響,結(jié)果表明,不考慮樁土相互作用,主塔的動(dòng)力響應(yīng)將被低估。(8)本文對(duì)流體粘滯阻尼器對(duì)望東長(zhǎng)江公路大橋的減震效果進(jìn)行了分析,主要分析了阻尼系數(shù)對(duì)減震效果的影響,結(jié)果表明,流體粘滯阻尼器可以明顯降低結(jié)構(gòu)位移響應(yīng),塔底彎矩響應(yīng)。
[Abstract]:In this paper, the steel-concrete composite girder cable-stayed bridge, Wangdong Changjiang Highway Bridge, which has the largest span and the longest connecting length in China, is used as the engineering background. The optimization of the dead load cable force, the analysis of the dynamic characteristics and the analysis of the seismic response are carried out in this paper. The main work and conclusions are as follows: 1) summarize the development course of steel-concrete composite beam cable-stayed bridge, and compare with steel cable-stayed bridge, concrete cable-stayed bridge has good static and dynamic behavior. The significance of seismic analysis of cable-stayed bridge and the key influencing factors are clarified. This paper summarizes the main methods of seismic calculation, and determines whether it can be applied to the calculation and analysis of long-span cable-stayed bridges, and whether the calculation results are limited. The finite element model of the whole bridge is established. The zero displacement method, the minimum bending strain energy method and the first order optimization method are used to optimize the cable force of the composite girder cable-stayed bridge. The results show that the first order optimization method has achieved very good optimization results in terms of linear shape, main beam, internal force of main tower and strain distribution of cable. 4) the consolidation model and concentrated mass model of pier bottom are established. The effect of pile-soil interaction on the dynamic characteristics of the structure is analyzed. The calculated results show that the pile-soil interaction has a significant effect on the structure. The response spectrum of the structure under the action of transverse bridge and vertical earthquake is analyzed. The results show that the axial force, bending moment and displacement of the vertical earthquake have a great influence on the axial force, bending moment and displacement of the structure. The nonlinear time-history analysis of the structural response under the interaction of horizontal bridge and vertical earthquake shows that the seismic response along the bridge is the key factor in the seismic design of semi-floating system, and the influence of vertical earthquake should be considered, and the internal force of the structure should be taken into account. Displacement time history obviously shows the characteristics of long-period structure.) based on m method, the pile-soil interaction is equivalent to a horizontally arranged spring, and the influence on seismic response is studied by time-history analysis. The results show that, Without considering the pile-soil interaction, the dynamic response of the main tower will be underestimated.) in this paper, the damping effect of fluid viscous damper on Wangdong Yangtze River Highway Bridge is analyzed, and the effect of damping coefficient on the damping effect is analyzed. Fluid viscous dampers can significantly reduce the displacement response of the structure and the bending moment response at the bottom of the tower.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:U442.55;U448.27
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 詹建輝;彭曉彬;;大跨度組合梁斜拉橋結(jié)構(gòu)設(shè)計(jì)方案研究[J];橋梁建設(shè);2016年04期
2 林眉;盧忠斌;;2015年尼泊爾8.1級(jí)地震后中國(guó)及附近地區(qū)地震趨勢(shì)分析[J];地震地磁觀測(cè)與研究;2016年02期
3 宋濤;宋一凡;賀拴海;文鋒;;基于索梁權(quán)矩陣的矮塔斜拉橋索力優(yōu)化[J];武漢大學(xué)學(xué)報(bào)(工學(xué)版);2016年02期
4 姚蓓;張啟偉;;鋼斜拉橋運(yùn)營(yíng)期耐久性與易損性監(jiān)測(cè)[J];中外公路;2016年01期
5 屈愛(ài)平;李龍安;;滬通長(zhǎng)江大橋主航道橋抗震設(shè)計(jì)[J];橋梁建設(shè);2015年06期
6 趙國(guó)輝;郭華東;劉健新;;長(zhǎng)周期地震動(dòng)作用下大跨徑斜拉橋響應(yīng)分析[J];建筑科學(xué)與工程學(xué)報(bào);2015年01期
7 吳霄;肖汝誠(chéng);;基于遺傳算法的大跨度混合梁斜拉橋索力優(yōu)化[J];江蘇大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年06期
8 潘旦光;靳國(guó)豪;高莉莉;;大跨斜拉橋Rayleigh阻尼系數(shù)約束優(yōu)化解[J];振動(dòng)與沖擊;2014年16期
9 李加武;黃森華;王新;;開(kāi)口斷面斜拉橋主梁動(dòng)力特性的有限元簡(jiǎn)化計(jì)算[J];建筑科學(xué)與工程學(xué)報(bào);2013年04期
10 謝文;孫利民;;超大跨斜拉橋橫向地震破壞模式與損傷控制分析[J];振動(dòng)工程學(xué)報(bào);2013年06期
相關(guān)博士學(xué)位論文 前1條
1 張鳴祥;大跨度橋梁的風(fēng)致振動(dòng)分析與被動(dòng)控制研究[D];合肥工業(yè)大學(xué);2011年
相關(guān)碩士學(xué)位論文 前3條
1 董金武;特大跨度斜拉橋地震反應(yīng)分析與振動(dòng)控制[D];哈爾濱工業(yè)大學(xué);2015年
2 陳驍;基于神經(jīng)網(wǎng)絡(luò)和遺傳算法結(jié)合的斜拉橋索力優(yōu)化研究和施工控制[D];武漢理工大學(xué);2013年
3 熊春輝;基于流體阻尼器的大跨度斜拉橋結(jié)構(gòu)振動(dòng)被動(dòng)控制[D];武漢理工大學(xué);2011年
,本文編號(hào):1827539
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1827539.html