拱形斜塔斜拉橋仿真分析與關(guān)鍵技術(shù)研究
本文選題:斜塔 + 斜拉橋; 參考:《東南大學(xué)》2015年碩士論文
【摘要】:拱形斜塔斜拉橋是一種新穎的斜拉橋結(jié)構(gòu)的分支。這種橋型由于斜向、拱形的特點(diǎn),空間效應(yīng)非常明顯,不論是設(shè)計(jì),還是施工,難度都非常大。因此,這種新穎的橋型就給實(shí)際的施工控制過程帶來了創(chuàng)新型的課題。本文結(jié)合實(shí)際工程兆河大橋,研究了斜拉橋施工控制的相關(guān)理論,以及施工控制技術(shù)在兆河大橋施工過程中的應(yīng)用,對(duì)兆河大橋主塔和主梁的線形和內(nèi)力進(jìn)行了施工控制。本文重點(diǎn)論述了兆河大橋施工控制的內(nèi)容、實(shí)施方法,對(duì)主梁、主塔線形控制和內(nèi)力控制中的實(shí)際監(jiān)測的結(jié)果和理論計(jì)算結(jié)果進(jìn)行了比較分析。通過施工控制技術(shù)的指導(dǎo),保證了兆河大橋在線形控制、內(nèi)力控制等方面達(dá)到了設(shè)計(jì)的要求,確保了兆河大橋的安全施工。以兆河大橋?yàn)榛A(chǔ),建立了兆河大橋成橋階段和施工階段仿真計(jì)算模型,包括MIDAS桿系模型、MIDAS梁格法模型和ANSYS模型。在兆河大橋的現(xiàn)場施工控制中,以仿真計(jì)算的數(shù)據(jù)作為理論控制值,提供主梁施工預(yù)拱度、控制截面位置處的應(yīng)力、主塔預(yù)偏量等關(guān)鍵數(shù)據(jù),理論計(jì)算的結(jié)果指導(dǎo)了兆河大橋的施工。同時(shí),為保證仿真計(jì)算用的有限元模型的準(zhǔn)確性,采用梁格法和實(shí)體模型法兩種模型進(jìn)行對(duì)比分析,比較各種計(jì)算模型計(jì)算結(jié)果的誤差大小,理論計(jì)算結(jié)果誤差合理時(shí)再用于指導(dǎo)兆河大橋的施工,以盡可能保證計(jì)算結(jié)果的正確性。提出了確定兆河大橋合理成橋狀態(tài)的各種方法,并用影響矩陣法確定了兆河大橋的合理成橋索力,其基本思路是:鑒于影響矩陣法的影響元素可以取內(nèi)力、位移等中的一個(gè),利用MIDAS軟件中的未知荷載系數(shù)功能給兆河大橋斜拉索賦予初始張拉力,然后將恒載和斜拉索單位初始拉力建立荷載組合,計(jì)算出滿足約束條件的目標(biāo)函數(shù),得到一組未知荷載系數(shù)。以求得的該組荷載系數(shù)建立新的荷載組合,計(jì)算查看分析結(jié)果是否滿足定義的約束條件。提出了確定兆河大橋合理施工狀態(tài)的正裝迭代法,其基本思路是:先假定一組控制張拉索力,按正裝計(jì)算得到一個(gè)成橋狀態(tài),將該成橋狀態(tài)與事先定好的合理成橋狀態(tài)比較,按最小二乘法原理使兩個(gè)成橋狀態(tài)相差最小,以此來修正控制張拉索力,再進(jìn)行新的一輪正裝計(jì)算,直至收斂為止。該方法只需做正裝計(jì)算,且將不閉合原因造成的影響通過最小二乘法原理降到最低程度。采用有限元仿真分析軟件來確定兆河大橋斜拉索施工索力。施工索力用于斜拉索張拉時(shí)的施工控制中,成橋后測得的索力再與設(shè)計(jì)成橋索力對(duì)比,驗(yàn)證施工索力計(jì)算的正確性。
[Abstract]:Arch inclined tower cable-stayed bridge is a new branch of cable-stayed bridge structure. Due to the characteristics of skew and arch, the spatial effect of this bridge is very obvious, whether in design or construction, it is very difficult. Therefore, this novel bridge type has brought the innovative subject to the actual construction control process. This paper studies the construction control theory of cable-stayed bridge and the application of construction control technology in the construction process of Zhaohe Bridge, and controls the alignment and internal force of the main tower and girder of Zhaohe Bridge. In this paper, the contents and methods of construction control of Zhaohe Bridge are discussed, and the actual monitoring results and theoretical calculation results of main girder, main tower alignment control and internal force control are compared and analyzed. Through the guidance of construction control technology, the design requirements of the Zhaohe Bridge in the aspects of linear control and internal force control are ensured, and the safe construction of the Zhaohe Bridge is ensured. Based on the Zhaohe Bridge, the simulation calculation models of the Zhaohe Bridge in the stage of bridge completion and construction are established, including the MIDAS bar model and the Midas beam method model and the ANSYS model. In the field construction control of Zhaohe Bridge, the simulation data is used as the theoretical control value to provide the key data such as the pre-arch degree of the main beam construction, the stress at the control section position, the pre-deflection of the main tower, and so on. The results of theoretical calculation have guided the construction of Zhaohe Bridge. At the same time, in order to ensure the accuracy of the finite element model used in simulation calculation, the beam method and the solid model method are used to compare the error between the calculation results of the two models. When the error of theoretical calculation results is reasonable, it can be used to guide the construction of Zhaohe Bridge so as to ensure the correctness of the calculation results as much as possible. Various methods to determine the reasonable state of Zhaohe Bridge are put forward, and the rational cable force of Zhaohe Bridge is determined by using the influence matrix method. The basic idea is as follows: in view of the influence elements of the influence matrix method can take one of the internal forces and displacements, etc. The function of unknown load coefficient in MIDAS software is used to give initial tension to the cable of Zhaohe Bridge. Then the load combination of dead load and unit initial tension of stay cable is established, and the objective function satisfying the constraint condition is calculated. A set of unknown load coefficients are obtained. Based on the set of load coefficients obtained, a new load combination is established, and the analysis results are calculated to see if the defined constraint conditions are satisfied. This paper presents an iterative method for determining the reasonable construction state of Zhaohe Bridge. The basic ideas are as follows: first, a group of tension forces are assumed to be controlled, and a bridge state is obtained according to the calculation of the normal load, and the state of the completed bridge is compared with the reasonable state of the bridge determined in advance. According to the principle of the least square method, the difference between the two completed bridge states is minimized, so that the tension can be modified and controlled, and then a new round of dress calculation is carried out until the convergence is reached. This method only needs to do formal calculation, and the influence caused by non-closure is minimized by the principle of least square method. The finite element simulation analysis software is used to determine the cable force of cable construction of Zhaohe Bridge. The construction cable force is used in the construction control of the cable-stayed tension. The cable force measured after the completion of the bridge is compared with the designed cable force to verify the correctness of the calculation of the construction cable force.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U448.27
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉方華;涂旭鳴;姚鋒;;梁格法在連續(xù)箱梁橋建模中具體劃分研究[J];湖南工程學(xué)院學(xué)報(bào)(自然科學(xué)版);2012年04期
2 張群;劉沐宇;;基于正裝迭代法的三塔結(jié)合梁斜拉橋計(jì)算分析[J];土木工程與管理學(xué)報(bào);2011年03期
3 薛成鳳;白延芳;趙雷;;大跨度混凝土斜拉橋施工控制正裝和倒拆仿真分析[J];鐵道建筑;2009年08期
4 楊志華;;梁格法在混凝土連續(xù)箱梁橋計(jì)算中的應(yīng)用[J];中國水運(yùn)(理論版);2006年05期
5 王玉琴;如何在ANSYS中實(shí)現(xiàn)自定義梁截面[J];陜西工學(xué)院學(xué)報(bào);2003年02期
6 傅強(qiáng),張澤鵬,嚴(yán)學(xué)寨;斜拉橋結(jié)構(gòu)優(yōu)化設(shè)計(jì)初探[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年S1期
7 官萬軼,韓大建;大跨度斜拉橋施工控制方法研究進(jìn)展[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);1999年11期
8 顏東煌,劉光棟;確定斜拉橋合理施工狀態(tài)的正裝迭代法[J];中國公路學(xué)報(bào);1999年02期
9 陳德偉,范立礎(chǔ),項(xiàng)海帆;獨(dú)塔斜拉橋(廣東三水橋)的施工控制[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);1997年01期
10 范立礎(chǔ),杜國華,馬健中;斜拉橋索力優(yōu)化及非線性理想倒退分析[J];重慶交通學(xué)院學(xué)報(bào);1992年01期
相關(guān)博士學(xué)位論文 前4條
1 江德增;斜塔斜拉橋施工與運(yùn)營過程中的力學(xué)行為研究[D];華南理工大學(xué);2010年
2 高榮雄;混合梁斜拉橋施工控制技術(shù)研究[D];武漢理工大學(xué);2005年
3 杜蓬娟;混凝土斜拉橋施工過程控制理論研究[D];大連理工大學(xué);2003年
4 顏東煌;斜拉橋合理設(shè)計(jì)狀態(tài)確定與施工控制[D];湖南大學(xué);2001年
相關(guān)碩士學(xué)位論文 前10條
1 韓威;獨(dú)斜塔斜拉橋合理成橋索力及參數(shù)敏感性研究[D];西南交通大學(xué);2013年
2 楊曉超;梁格法在曲線箱梁橋分析中的應(yīng)用[D];長沙理工大學(xué);2013年
3 林楨楷;高低塔混合梁斜拉橋合理施工狀態(tài)確定與施工控制[D];華南理工大學(xué);2012年
4 董泉清;雙斜塔無背索部分斜拉橋施工控制中的問題及分析[D];長安大學(xué);2012年
5 沈立中;大跨徑雙斜塔無背索斜拉橋設(shè)計(jì)及施工控制[D];長安大學(xué);2011年
6 郭文龍;矮塔斜拉橋合理設(shè)計(jì)狀態(tài)及動(dòng)力特性研究[D];長安大學(xué);2011年
7 李曉磊;獨(dú)斜塔單索面斜拉橋設(shè)計(jì)、施工及施工控制技術(shù)研究[D];長安大學(xué);2011年
8 石徑;斜塔斜拉橋索塔施工控制研究[D];武漢理工大學(xué);2011年
9 許會(huì);多塔斜拉橋理想成橋索力及施工階段索力的確定[D];西南交通大學(xué);2011年
10 孫長軍;斜拉索施工及索力控制技術(shù)研究[D];西南交通大學(xué);2010年
,本文編號(hào):1822626
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1822626.html