考慮不確定性因素的消防車輛路線優(yōu)化
本文選題:消防車導(dǎo)航 + 出行時間可靠性。 參考:《大連理工大學(xué)》2015年碩士論文
【摘要】:發(fā)生城市火災(zāi)時,消防救援力量能夠及時到達現(xiàn)場展開救援的具有重要意義。作為交通流的一部分,消防車輛在行駛中受到了實時交通狀況、突發(fā)事件等影響,這些因素導(dǎo)致從消防中心到火災(zāi)地點的行程時間具有不確定性。同時,消防車輛線路優(yōu)化具有不同于一般社會車輛線路優(yōu)化的屬性。首先,消防車輛對出行線路的可靠性要求很高,這需要規(guī)劃中保證導(dǎo)航線路的可靠度;其次,消防車輛出行對時間要求很高,.但是對以節(jié)省耗油為目標(biāo)的路程最短要求不高,因此目標(biāo)以節(jié)省時間為主,研宄實時導(dǎo)航;最后,消防車輛不受交通信號、交通流行駛方向等的限制,因此出動線路規(guī)劃中的可行路網(wǎng)應(yīng)當(dāng)將逆向行駛路段包括在內(nèi)。針對消防車輛的上述屬性,本文假設(shè)路段的行程時間是一個隨機數(shù),并分別懫用了隨機路網(wǎng)以及隨機時變路網(wǎng)作為消防車輛路線規(guī)劃中路網(wǎng)模型的基礎(chǔ)。在分析對比多種隨機網(wǎng)絡(luò)中路線規(guī)劃指標(biāo)的基礎(chǔ)上,依據(jù)消防部門的評價原則,選取了ct-可靠度以及平均出行時間最為消防車輛線路規(guī)劃的兩個目標(biāo),提出了帕累托最優(yōu)路線集合的概念。然后,基于傳統(tǒng)的最短路徑算法,通過擴展貝爾曼最優(yōu)性原理,改進了現(xiàn)有的標(biāo)號算法,分別給出了隨機網(wǎng)絡(luò)以及隨機時變網(wǎng)絡(luò)中消防車輛線路規(guī)劃的求解算法。文章接下來引入了自適應(yīng)路由策略的定義,確定在實時前進過程中,消防車輛導(dǎo)航的原則,給出了具體的算法。最后,本文選取了大連市中心的區(qū)域作為研究對象,展示了算法的運行結(jié)果,并分析了算法的運行速度等指標(biāo)。研究結(jié)果表明,本文的目標(biāo)函數(shù)能夠很好的反映消防車輛出行的決策過程,且在城市消防車服務(wù)區(qū)域的路網(wǎng)規(guī)模下,求解算法能夠保持較快的運行速度。
[Abstract]:It is of great significance that the fire rescue force can reach the scene in time to carry out the rescue in case of urban fire. As a part of traffic flow, fire fighting vehicles are affected by real-time traffic conditions and unexpected events. These factors lead to uncertainty of travel time from fire center to fire site. At the same time, fire vehicle route optimization is different from the common social vehicle line optimization attribute. First of all, the reliability requirements of fire fighting vehicles to travel line is very high, which needs to ensure the reliability of navigation line in the planning; secondly, the travel time requirement of fire fighting vehicles is very high. However, the shortest distance to save fuel is not high, so the goal is to save time and study the navigation in real time. Finally, the fire fighting vehicle is not restricted by the traffic signal, the direction of the traffic flow, etc. Therefore, the feasible road network in the route planning should include the reverse section. In view of the above properties of fire fighting vehicles, this paper assumes that the travel time of road sections is a random number, and uses the random road network and the random time-varying road network as the basis of the road network model in the route planning of fire fighting vehicles. On the basis of analyzing and comparing the route planning indexes of various random networks, according to the evaluation principle of fire department, two targets of CT-reliability and average travel time are selected as the most important targets for the route planning of fire fighting vehicles. The concept of Pareto optimal route set is proposed. Then, based on the traditional shortest path algorithm and by extending Belman's optimality principle, the existing labeling algorithms are improved, and the algorithms for the route planning of fire fighting vehicles in stochastic networks and stochastic time-varying networks are given respectively. Then the paper introduces the definition of adaptive routing strategy, determines the principles of fire vehicle navigation in the real-time forward process, and gives the specific algorithm. Finally, this paper selects the area in the center of Dalian as the research object, shows the running results of the algorithm, and analyzes the running speed of the algorithm. The results show that the objective function of this paper can well reflect the decision-making process of fire vehicle travel, and the solution algorithm can keep a faster running speed under the network scale of urban fire engine service area.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:U491
【共引文獻】
相關(guān)期刊論文 前4條
1 秦娟;張錦;呂彪;;隨機路網(wǎng)多時段隨機期望——超額用戶均衡模型[J];計算機應(yīng)用研究;2014年04期
2 鮑月;徐猛;高自友;;基于均值-超量系統(tǒng)總阻抗的隨機擁擠收費模型[J];管理科學(xué)學(xué)報;2015年01期
3 楊廈;;基于可靠性的隨機擁擠收費模型[J];數(shù)學(xué)的實踐與認識;2013年24期
4 楊廈;;基于CVaR的次優(yōu)擁擠收費隨機多目標(biāo)模型[J];數(shù)學(xué)的實踐與認識;2015年07期
相關(guān)博士學(xué)位論文 前10條
1 陳喜群;交通流動態(tài)隨機演化模型研究[D];清華大學(xué);2012年
2 呂彪;隨機路網(wǎng)配流及廣義網(wǎng)絡(luò)設(shè)計研究[D];西南交通大學(xué);2013年
3 韓凌輝;多種交通網(wǎng)絡(luò)條件下出行者的出行選擇行為分析[D];北京交通大學(xué);2014年
4 張文義;日變交通路徑調(diào)整模型與算法研究[D];北京交通大學(xué);2014年
5 孫華;基于魯棒優(yōu)化的城市交通網(wǎng)絡(luò)設(shè)計模型與算法研究[D];北京交通大學(xué);2014年
6 劉炳全;城市交通網(wǎng)絡(luò)擁擠收費設(shè)計:模型與算法[D];武漢大學(xué);2014年
7 王偉;基于有限理性的出行行為建模與均衡分析[D];北京交通大學(xué);2015年
8 朱成娟;考慮停車換乘的多方式交通網(wǎng)絡(luò)出行行為分析[D];北京交通大學(xué);2015年
9 秦娟;不確定環(huán)境下面向不同主體的物流服務(wù)策略研究[D];西南交通大學(xué);2013年
10 郭洪洋;信息約束條件下的路網(wǎng)行程時間可靠性研究[D];西南交通大學(xué);2014年
,本文編號:1821695
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1821695.html