深水圓截面橋墩地震響應(yīng)的分析與試驗
本文選題:Morison方程 + 振動臺試驗; 參考:《哈爾濱工業(yè)大學(xué)》2017年碩士論文
【摘要】:隨著經(jīng)濟的快速發(fā)展,一大批大跨度深水橋梁相繼建成。相比于處于內(nèi)陸的橋梁,深水橋梁所處環(huán)境更加復(fù)雜,不僅會遭受強風(fēng)荷載,還會受到地震作用。當(dāng)處于深水中的結(jié)構(gòu)遭受地震作用時,水-墩相互作用而產(chǎn)生的動水壓力不僅會改變結(jié)構(gòu)的動力特性,還會改變其動力響應(yīng)。因此,對于深水橋墩的地震響應(yīng)研究有很重要的理論與應(yīng)用意義。為真實的模擬海底地震作用機理,本文對水箱結(jié)構(gòu)進行了設(shè)計,水箱由剛性基礎(chǔ)支承于地面,并通過水平連接板與振動臺連接,以達到水箱向振動臺只傳遞水平荷載,不傳遞豎向荷載的目的,并通過自行設(shè)計的水箱完成了振動臺模型試驗。本文通過試驗實測加速度值,對Morison方程中的附加質(zhì)量系數(shù)與附加阻尼系數(shù)進行了測定。并研究了附加質(zhì)量系數(shù)與附加阻尼系數(shù)與結(jié)構(gòu)入水深度比、長細比、雷諾數(shù)三個參量的關(guān)系。研究發(fā)現(xiàn),附加質(zhì)量系數(shù)隨著結(jié)構(gòu)入水深度比的增大而增大。附加質(zhì)量系數(shù)與附加阻尼系數(shù)隨著雷諾數(shù)的增大而減小。而針對附加質(zhì)量系數(shù)與附加阻尼系數(shù)在負數(shù)區(qū)間波動的現(xiàn)象,可以解釋為圓柱結(jié)構(gòu)從水中吸收了一定能量,引起了自身的不穩(wěn)定造成的。但截至目前為止,還沒有一種完備的理論模型可以對這一現(xiàn)象進行分析,有待相關(guān)學(xué)者進一步探究。本文選取墩底最大剪力、墩底最大彎矩、墩頂最大位移三個基本參量,利用有限元軟件Workbench對橋墩結(jié)構(gòu)進行動力響應(yīng)分析。研究發(fā)現(xiàn):(1)對于同一直徑的圓形截面單墩,結(jié)構(gòu)的動力響應(yīng)隨著地震動峰值加速度的增大而增大。對于不同直徑的圓形截面單墩,地震動水效應(yīng)對橋墩墩底最大彎矩有增大效應(yīng),而對墩頂最大位移卻有減小的趨勢。(2)隨著長細比的增大,橋墩結(jié)構(gòu)墩底最大剪力與墩底最大彎矩都有明顯的增大趨勢,而墩頂最大位移幅值卻先增大后減小,其值最后小于無水單墩。說明水的存在會改變結(jié)構(gòu)的動力響應(yīng),但未必都是增大效應(yīng)。通過對比數(shù)值計算與試驗得到的墩頂加速度時程曲線發(fā)現(xiàn)兩者趨勢基本相同,其中試驗實測得到的加速度峰值為0.96g,而數(shù)值模擬所得到的加速度峰值為0.82g,兩者誤差為14.58%。
[Abstract]:With the rapid development of the economy, a large number of long-span deepwater bridges have been built one after another. Compared to the inland bridges, the environment of the deep water bridge is more complex, not only will suffer strong wind load, but also be subjected to earthquake action. When the structure in deep water is subjected to seismic action, the dynamic water pressure produced by water pier interaction will not only change. The dynamic characteristics of the structure will also change its dynamic response. Therefore, it is of great theoretical and practical significance to study the seismic response of the piers in deep water. For the real simulation of the mechanism of the seabed seismic action, the water tank structure is designed. The water tank is supported by the rigid foundation on the ground surface and connected by the horizontal connecting plate to the vibrating table. The water tank passes the horizontal load only to the vibrating table, does not transfer the vertical load, and completes the shaking table model test through the self designed water tank. In this paper, the additional mass coefficient and the additional damping coefficient in the Morison equation are measured by testing the measured acceleration values. The additional mass coefficient and the additional damping system are studied. It is found that the additional mass coefficient and the additional damping coefficient decrease with the increase of the Reynolds number, and the additional mass coefficient and the additional damping coefficient fluctuate in the negative interval, and the additional mass coefficient and additional damping coefficient decrease. It can be explained that the cylindrical structure absorbs a certain amount of energy from the water and causes its own instability. But so far, there is not a complete theoretical model that can be used to analyze this phenomenon. The maximum shear force of the bottom of the pier, the maximum bending moment of the bottom of the pier and the maximum displacement of the pier top are selected in this paper. Three bases are selected in this paper. The dynamic response of the pier structure is analyzed by the finite element software Workbench. It is found that: (1) the dynamic response of the structure increases with the increase of the peak acceleration of the ground motion for the single pier with the same diameter. For the single pier with different diameter, the earthquake dynamic water effect increases the maximum bending moment of the pier bottom. The maximum displacement of the pier has a tendency to decrease. (2) with the increase of the length and length, the maximum shear force of pier bottom and the maximum bending moment of pier bottom all have a obvious increase trend, but the maximum displacement amplitude of the pier top increases first and then decreases, and its value is less than that of the single pier without water. It is indicated that the existence of water will change the dynamic response of the structure, but not the dynamic response of the structure. It is necessary to increase the effect. By comparing the acceleration time curve of the pier top acceleration obtained by numerical calculation and test, it is found that the two trends are basically the same, of which the peak acceleration of the acceleration is 0.96g, and the peak of the acceleration is 0.82g, and the error is 14.58%.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U442.55
【參考文獻】
相關(guān)期刊論文 前10條
1 房忱;李永樂;;跨海大橋小尺度下部結(jié)構(gòu)非線性波浪荷載分析[J];鐵道標(biāo)準(zhǔn)設(shè)計;2017年05期
2 吳林鍵;王元戰(zhàn);李青美;李怡;;基于浮體Morison方程的半潛式超大型浮式結(jié)構(gòu)波浪力簡化計算方法[J];船舶工程;2016年12期
3 高昊;趙東曉;黃勇;王君杰;;柱列地震慣性水動力系數(shù)的經(jīng)驗公式[J];世界地震工程;2016年04期
4 柳春光;張繼偉;張士博;;深水斜拉橋主塔模型水下振動臺動力試驗研究[J];水利與建筑工程學(xué)報;2016年03期
5 林曾;章勇;袁萬城;游科華;黨新志;;深水多塔斜拉橋地震動水效應(yīng)分析[J];結(jié)構(gòu)工程師;2016年01期
6 江輝;楚芹;崔禹婷;;地震動脈沖參數(shù)對近斷層區(qū)深水橋墩動力響應(yīng)的影響分析[J];鐵道學(xué)報;2015年08期
7 劉浪;楊萬理;李喬;;深水橋梁墩水耦合抗震分析方法[J];西南交通大學(xué)學(xué)報;2015年03期
8 張潔;曾金明;朱東生;;動水壓力對深水橋梁地震響應(yīng)的影響[J];重慶交通大學(xué)學(xué)報(自然科學(xué)版);2014年05期
9 聶利英;劉群;劉國光;潘哲;朱宗景;;深水連續(xù)剛構(gòu)橋地震響應(yīng)分析[J];江南大學(xué)學(xué)報(自然科學(xué)版);2014年01期
10 嵇冬冰;段昕智;徐艷;李建中;;斜拉橋橋塔縱橋向振動臺試驗研究[J];石家莊鐵道大學(xué)學(xué)報(自然科學(xué)版);2013年02期
相關(guān)博士學(xué)位論文 前2條
1 劉振宇;深水橋梁的地震響應(yīng)研究[D];西南交通大學(xué);2008年
2 朱彤;結(jié)構(gòu)動力模型相似問題及結(jié)構(gòu)動力試驗技術(shù)研究[D];大連理工大學(xué);2004年
相關(guān)碩士學(xué)位論文 前3條
1 王志;強震下深水橋梁群樁基礎(chǔ)的動力響應(yīng)及非線性損傷特性研究[D];北京交通大學(xué);2015年
2 盧浩;Morison方程法在深水橋梁地震響應(yīng)分析中的適用范圍研究[D];北京交通大學(xué);2013年
3 韓亮;橋墩結(jié)構(gòu)模型與水相互作用的水下振動臺試驗研究[D];大連理工大學(xué);2011年
,本文編號:1782538
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1782538.html