高速鐵路隧道洞口緩沖結(jié)構(gòu)抗減震措施研究
本文選題:高速鐵路 + 隧道; 參考:《西南交通大學(xué)》2016年碩士論文
【摘要】:高速列車高速穿越隧道時(shí)會(huì)產(chǎn)生明顯的氣動(dòng)效應(yīng),為解決這一問題通常會(huì)在洞口設(shè)置緩沖結(jié)構(gòu)。相比于隧道,洞口緩沖結(jié)構(gòu)的抗減震性能要差很多。我國高鐵發(fā)展迅猛,且全國大部分地區(qū)都是地震設(shè)防區(qū),因此,研究高速鐵路隧道洞外緩沖結(jié)構(gòu)的地震響應(yīng)特性以及其抗減震措施具有重要意義。本文運(yùn)用有限元軟件ABAQUS模擬分析了條頂組合開口、側(cè)頂組合開口、間縫式雙開口、條帶式雙開口和無開口緩沖結(jié)構(gòu)地震動(dòng)力響應(yīng)特性;同時(shí)提出抗震縫、混凝土底板、聯(lián)合設(shè)置抗震縫和混凝土底板以及聯(lián)合設(shè)置抗震縫和鋼筋拉桿四種抗減震措施,并對(duì)其抗減震性能進(jìn)行了模擬分析和評(píng)價(jià),得到的主要結(jié)論有:(1)在地震荷載作用下,拱頂加速響應(yīng)最大,拱肩和拱腰次之,拱腳和仰拱較。桓骶彌_結(jié)構(gòu)整體加速度響應(yīng)大小順序?yàn)椋簵l帶式雙開口條頂組合開口無開口側(cè)頂組合開口間縫式雙開口;開口對(duì)其附近部位加速度有一定放大作用。(2)在地震荷載作用下,拱腰的Mises應(yīng)力最大,拱肩次之,拱腳第三,拱頂和仰拱較小(條帶式雙開口拱頂和拱腳的Mises應(yīng)力值相差不多);各緩沖結(jié)構(gòu)整體Mises應(yīng)力響應(yīng)大小順序?yàn)椋簵l帶式雙開口無開口側(cè)頂組合開口、間縫式雙開口條頂組合開口;開口附近部位的Mises應(yīng)力變化幅度較大。(3)在地震荷載作用下,整體上拱腰的最大主應(yīng)力最大,拱頂次之,拱肩第三,拱腳第四,仰拱最;各緩沖結(jié)構(gòu)整體最大主應(yīng)力響應(yīng)大小順序?yàn)椋簾o開口間縫式雙開口側(cè)頂組合開口條帶式雙開口條頂組合開口;開口放大了最大主應(yīng)力值。(4)抗震縫對(duì)緩沖結(jié)構(gòu)抗震縫附近各部位的加速度響應(yīng)有一定放大作用,但有效減小了各部位Mises應(yīng)力響應(yīng)峰值和最大主應(yīng)力值,抗減震效果較好。(5)混凝土底板對(duì)緩沖結(jié)構(gòu)除拱頂外的所有其他部位加速度響應(yīng)表現(xiàn)出極大的放大作用;對(duì)Mises應(yīng)力和最大主應(yīng)力在靠近洞口段表現(xiàn)出了明顯的放大作用,遠(yuǎn)離洞口段則表現(xiàn)為一定的減小作用,抗減震效果較差。(6)聯(lián)合使用抗震縫和混凝土底板整體上對(duì)緩沖結(jié)構(gòu)各部位加速度、Mises應(yīng)力和最大主應(yīng)力值有極好的減小作用,抗減震措施好。(7)聯(lián)合使用抗震縫和鋼筋拉桿對(duì)緩沖結(jié)構(gòu)各部位加速度有極大的放大作用,且放大了大部分部位的Mises應(yīng)力和最大主應(yīng)力,抗減震效果差。
[Abstract]:The aerodynamic effect of high-speed train passing through the tunnel at high speed is obvious. To solve this problem, buffer structure is usually set up at the entrance of the tunnel. Compared with the tunnel, the damping performance of the orifice buffer structure is much worse than that of the tunnel. The high-speed rail in China is developing rapidly, and most areas in China are seismic fortification areas. Therefore, it is of great significance to study the seismic response characteristics of the buffer structure outside the tunnel of high-speed railway tunnel and its anti-seismic mitigation measures. In this paper, finite element software ABAQUS is used to simulate and analyze the seismic dynamic response characteristics of strip top combined opening, side top combined opening, intersecting double opening, strip double opening and non-opening buffer structure, and the seismic joint and concrete floor slab are also proposed. Four kinds of anti-seismic measures are jointly set up, such as anti-seismic joint and concrete floor slab, joint anti-seismic joint and steel bar, and their anti-seismic performance is simulated and evaluated. The main conclusions are as follows: (1) under earthquake load, The acceleration response of arch roof is the biggest, the arch shoulder and arch waist is the second, the arch foot and inverted arch are smaller, the order of the whole acceleration response of each buffer structure is: strip type double opening with double opening top combined opening, no opening side top combination opening joint opening double opening; The Mises stress of arch waist is the largest, the arch shoulder is the second, and the arch foot is the third. The Mises stress of the arch roof and inverted arch is small (the Mises stress value of the strip double opening arch roof and arch foot is not much difference), the order of the whole Mises stress response of each buffer structure is as follows: the strip double opening without opening side top combined opening, the interspersed double opening top combined opening; Under earthquake load, the maximum principal stress of the whole arch waist is the largest, the arch top is the second, the arch shoulder is the third, the arch foot is the fourth, and the inverted arch is the smallest. The order of the maximum principal stress response of each buffer structure is as follows: there is no slit between openings, double openings, side tops, open strips, double openings, top combination openings; The opening magnifies the maximum principal stress value. 4) the seismic joint can enlarge the acceleration response of every part near the seismic joint of the buffer structure to some extent, but effectively reduces the peak value and the maximum principal stress value of the Mises stress response in each part. The concrete floor can greatly amplify the acceleration response of all parts of the buffer structure except the arch, and obviously amplify the Mises stress and the maximum principal stress near the orifice. The joint use of seismic joints and concrete floor can reduce the acceleration stress and the maximum principal stress of the buffer structure as a whole, and the maximum principal stress of the buffer structure can be reduced by the combination of anti-seismic joint and concrete bottom slab, and the effect of the joint use of anti-seismic joint and concrete bottom slab on the value of Mises stress and the maximum principal stress of the buffer structure is very good. The combination of seismic joint and steel bar can greatly enlarge the acceleration of the buffer structure, and amplify the Mises stress and the maximum principal stress of most parts, so the anti-seismic effect is not good.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:U452.28
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫鐵成;高波;葉朝良;;地下結(jié)構(gòu)抗震減震措施與研究方法探討[J];現(xiàn)代隧道技術(shù);2007年03期
2 徐建勇;彭立圣;;爆破震動(dòng)測(cè)試及減震措施[J];四川建筑;2009年02期
3 張兆杰;郭鵬;張兆亭;唐玉濱;萬明富;;角洞岙隧道上跨輸水隧道三維數(shù)值模擬及爆破減震措施研究[J];北方交通;2012年02期
4 崔逸瓊;胡方輝;;電梯抗震減震措施[J];黑龍江科技信息;2012年02期
5 信春雷;高波;周佳媚;申玉生;全曉娟;;跨斷層隧道抗減震措施性能振動(dòng)臺(tái)試驗(yàn)研究[J];巖土工程學(xué)報(bào);2014年08期
6 熊良宵;李天斌;楊林德;;隧道兩種減震措施的數(shù)值模擬研究[J];水文地質(zhì)工程地質(zhì);2007年04期
7 李志超;;露天礦鄰近最終邊坡的爆破技術(shù)和減震措施[J];科技傳播;2013年18期
8 顧培英,曹慶明,鄧凈;橋梁橫橋向抗震減震措施研究[J];橋梁建設(shè);2003年02期
9 王克海;李茜;韋韓;姜震宇;;大跨度橋梁的減震措施研究[J];公路;2009年05期
10 凌燕婷;高波;;高烈度地震區(qū)雙線公路隧道減震措施研究[J];隧道建設(shè);2008年04期
相關(guān)會(huì)議論文 前3條
1 田潔;王克成;董全利;劉恭忍;;相鄰建筑物減震措施研究[A];第五屆全國結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(第一卷)[C];1996年
2 李建中;沈康鑒;;云南山區(qū)非規(guī)則高架橋地震反應(yīng)特性及減震措施[A];中國公路學(xué)會(huì)橋梁和結(jié)構(gòu)工程分會(huì)2004年全國橋梁學(xué)術(shù)會(huì)議論文集[C];2004年
3 孔戈;周健;;盾構(gòu)隧道地震響應(yīng)及減震措施研究[A];中國土木工程學(xué)會(huì)第十三屆年會(huì)暨隧道及地下工程分會(huì)第十五屆年會(huì)論文集[C];2008年
相關(guān)博士學(xué)位論文 前1條
1 孫鐵成;雙洞錯(cuò)距山嶺隧道洞口段地震動(dòng)力響應(yīng)及減震措施研究[D];西南交通大學(xué);2009年
相關(guān)碩士學(xué)位論文 前7條
1 何俊;高速鐵路隧道洞口緩沖結(jié)構(gòu)抗減震措施研究[D];西南交通大學(xué);2016年
2 王義軍;國道318線黃草坪隧道地震動(dòng)力響應(yīng)及減震措施研究[D];成都理工大學(xué);2005年
3 于海滟;梁式橋梁端支承長度及豎向減震措施研究[D];北京交通大學(xué);2010年
4 鄒成路;穿越軟硬交界面隧道洞口結(jié)構(gòu)動(dòng)力響應(yīng)及其抗減震措施研究[D];西南交通大學(xué);2014年
5 司長亮;隱伏逆沖斷層上高路堤的破壞模式及抗減震措施研究[D];西南交通大學(xué);2013年
6 林之恒;高黎貢山隧道動(dòng)力穩(wěn)定性及抗減震措施研究[D];成都理工大學(xué);2010年
7 厚龍寶;劉家峽懸索橋地震反應(yīng)分析及減震措施研究[D];蘭州交通大學(xué);2014年
,本文編號(hào):1777590
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1777590.html