基于頻率測(cè)試及壓電阻抗技術(shù)的預(yù)應(yīng)力測(cè)試研究
本文選題:豎向預(yù)應(yīng)力 切入點(diǎn):張力測(cè)試 出處:《湖南大學(xué)》2015年碩士論文
【摘要】:在我國(guó)的橋梁建設(shè)當(dāng)中大量采用了預(yù)應(yīng)力混凝土連續(xù)箱梁橋,該橋型在經(jīng)濟(jì)合理性以及施工工藝方面均具有很大的優(yōu)越性,但主梁的豎向預(yù)應(yīng)力不足導(dǎo)致的梁體腹板開(kāi)裂問(wèn)題嚴(yán)重影響著橋梁的運(yùn)營(yíng)使用,嚴(yán)重制約了該橋型的發(fā)展。為了監(jiān)督施工時(shí)的豎向預(yù)應(yīng)力筋質(zhì)量,防止豎向預(yù)應(yīng)力損失過(guò)大而引起腹板開(kāi)裂,需要提出一套方便快捷、準(zhǔn)確可靠實(shí)用的檢測(cè)方法,進(jìn)一步制定出相應(yīng)配套的現(xiàn)場(chǎng)檢測(cè)及質(zhì)量評(píng)定標(biāo)準(zhǔn)。本文主要進(jìn)行了以下幾項(xiàng)研究工作:(1)豎向預(yù)應(yīng)力筋外露段的剛度會(huì)隨張力發(fā)生變化,基于此提出了兩種外露段的力學(xué)模型,即變截面剛度系數(shù)模型和變轉(zhuǎn)角剛度模型,進(jìn)一步闡述了基于頻率測(cè)試方法的預(yù)應(yīng)力筋張力測(cè)試原理,詳細(xì)推導(dǎo)了歐拉梁理論及鐵木辛柯梁理論,利用這兩種梁理論分別建立運(yùn)動(dòng)方程,并通過(guò)代入兩種模型的邊界條件來(lái)求得螺紋鋼外露段的振動(dòng)方程;(2)介紹了壓電智能材料的材料特性及其參數(shù),依據(jù)其獨(dú)特的壓電效應(yīng)建立了壓電運(yùn)動(dòng)方程,進(jìn)一步采用一維阻抗模型推導(dǎo)了壓電陶瓷片-結(jié)構(gòu)耦合系統(tǒng)的阻抗值公式,基于所得壓電系統(tǒng)的阻抗值公式闡述了基于壓電阻抗技術(shù)的預(yù)應(yīng)力筋張力測(cè)試原理;(3)基于頻率測(cè)試方法的預(yù)應(yīng)力筋張力測(cè)試原理及其振動(dòng)方程,設(shè)計(jì)并進(jìn)行了預(yù)應(yīng)力混凝土實(shí)驗(yàn),實(shí)驗(yàn)采集了長(zhǎng)度不一的外露段端部在不同張力下的自振頻率,并對(duì)頻率測(cè)試結(jié)果進(jìn)行分析處理,通過(guò)振動(dòng)方程得出模型剛度,擬合了兩種函數(shù)來(lái)表達(dá)頻率與剛度、剛度與張力之間的關(guān)系,基于擬合函數(shù)提出了張力計(jì)算公式并進(jìn)行了復(fù)核;(4)基于壓電阻抗技術(shù)進(jìn)行了預(yù)應(yīng)力筋的張力測(cè)試實(shí)驗(yàn),實(shí)驗(yàn)采集了錨固端處粘貼于不同位置的壓電陶瓷片的阻抗信號(hào),對(duì)實(shí)驗(yàn)結(jié)果進(jìn)行了阻抗指標(biāo)計(jì)算與處理,找出了壓電陶瓷片的敏感位置,同時(shí)得出了阻抗指標(biāo)隨張力改變的變化規(guī)律。
[Abstract]:The prestressed concrete continuous box girder bridge is widely used in the bridge construction in our country. The bridge type has great superiority in economic rationality and construction technology. However, the cracking of girder web caused by insufficient vertical prestressing of main beam seriously affects the operation and use of the bridge and seriously restricts the development of the bridge type. In order to supervise the quality of the vertical prestressed tendons during construction, To prevent the web from cracking due to the excessive loss of vertical prestress, it is necessary to put forward a set of convenient, accurate, reliable and practical testing methods. In this paper, the following research work is carried out: the stiffness of the exposed segment of the vertical prestressed tendons will change with the tension. Based on this, two kinds of mechanical models of the exposed segments are put forward. That is, variable cross-section stiffness coefficient model and variable rotation angle stiffness model, the principle of tension testing of prestressed tendons based on frequency measurement method is further expounded, and the theory of Euler beam and Temuxinko beam are deduced in detail. The equations of motion are established by using these two kinds of beam theories, and the vibration equation of the exposed section of rebar is obtained by inserting the boundary conditions of the two models.) the material characteristics and parameters of piezoelectric intelligent materials are introduced. According to its unique piezoelectric effect, the equation of piezoelectric motion is established, and the impedance formula of piezoelectric ceramic plate-structure coupling system is derived by using one-dimensional impedance model. Based on the impedance formula of piezoelectric system, the principle of tension testing of prestressed tendons based on piezoelectric impedance technique and its vibration equation are described. The experiment of prestressed concrete is designed and carried out. The natural vibration frequency of the end of the exposed segment with different lengths under different tension is collected, and the results of the frequency measurement are analyzed and processed, and the model stiffness is obtained by the vibration equation. Two kinds of functions are fitted to express the relationship between frequency and stiffness, stiffness and tension. Based on the fitting function, the tension calculation formula is put forward and the tension test of prestressed tendons is carried out based on piezoelectric impedance technique. The impedance signals of the piezoelectric ceramic plates affixed to different positions at the anchoring ends were collected experimentally. The impedance index of the experimental results was calculated and processed, and the sensitive position of the piezoelectric ceramic plates was found out. At the same time, the change law of impedance index with tension is obtained.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U446;U445.57
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐向鋒;張峰;佘勤聰;;箱梁豎向預(yù)應(yīng)力精軋螺紋筋張拉力檢測(cè)模型[J];應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào);2013年06期
2 孔存芝;周大全;張峰;楊為民;孫家龍;龍屹宇;;箱梁豎向預(yù)應(yīng)力張拉力無(wú)損檢測(cè)方法[J];中國(guó)科技論文;2013年11期
3 劉小燕;王瑋瑋;張峰;齊廣志;;預(yù)應(yīng)力混凝土箱梁豎向預(yù)應(yīng)力鋼筋有效預(yù)應(yīng)力檢測(cè)研究[J];公路工程;2013年03期
4 鐘新谷;顏永先;沈明燕;;基于豎向預(yù)應(yīng)力筋檢測(cè)方法的豎向預(yù)應(yīng)力外露段力學(xué)模型分析[J];公路工程;2013年01期
5 楊滔;鐘新谷;沈明燕;;PC箱梁橋腹板豎向預(yù)應(yīng)力筋外露段頻率特性的實(shí)驗(yàn)研究[J];振動(dòng)與沖擊;2011年12期
6 周家剛;尹新剛;;在役預(yù)應(yīng)力混凝土橋梁預(yù)應(yīng)力檢測(cè)技術(shù)——現(xiàn)狀、技術(shù)難點(diǎn)與展望[J];公路交通科技(應(yīng)用技術(shù)版);2011年06期
7 韓博宇;樓夢(mèng)麟;;變截面Timoshenko固端梁和簡(jiǎn)支梁的模態(tài)特性[J];力學(xué)季刊;2010年04期
8 鐘新谷;楊滔;沈明燕;禹建達(dá);謝獻(xiàn)忠;;混凝土箱梁橋腹板豎向預(yù)應(yīng)力筋張拉力檢測(cè)方法[J];中國(guó)公路學(xué)報(bào);2010年04期
9 田北平;吳佳曄;季文洪;毛利勝;沈卓洋;;預(yù)應(yīng)力錨桿張力無(wú)損檢測(cè)方法初探[J];四川建筑科學(xué)研究;2010年03期
10 潘旦光;吳順川;張維;;變截面Timoshenko懸臂梁自由振動(dòng)分析[J];土木建筑與環(huán)境工程;2009年03期
相關(guān)碩士學(xué)位論文 前7條
1 王瑋瑋;PC箱梁豎向預(yù)應(yīng)力損失測(cè)試方法及應(yīng)用技術(shù)研究[D];長(zhǎng)沙理工大學(xué);2013年
2 劉昶;預(yù)應(yīng)力混凝土箱梁橋豎向預(yù)應(yīng)力損失分析與檢測(cè)方法研究[D];長(zhǎng)安大學(xué);2013年
3 曠娟;基于壓電阻抗的鋼筋砼與鋼管砼結(jié)構(gòu)損傷監(jiān)測(cè)研究[D];湖南大學(xué);2012年
4 張婷;基于壓電陶瓷的鋼管混凝土柱界面剝離損傷監(jiān)測(cè)的實(shí)驗(yàn)研究[D];湖南大學(xué);2011年
5 譚婷;鋼—混凝土組合構(gòu)件連接件損傷識(shí)別[D];湖南大學(xué);2011年
6 邊東洋;Timoshenko梁理論的缺陷及其運(yùn)動(dòng)方程的修正[D];同濟(jì)大學(xué);2008年
7 馮偉;應(yīng)用于結(jié)構(gòu)健康監(jiān)測(cè)的壓電阻抗技術(shù)研究[D];南京航空航天大學(xué);2007年
,本文編號(hào):1684484
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1684484.html