拱橋和斜拉梁動(dòng)力學(xué)建模理論暨面內(nèi)自由振動(dòng)研究
本文選題:下承式拱橋 切入點(diǎn):上承式拱橋 出處:《湖南大學(xué)》2016年碩士論文
【摘要】:拱結(jié)構(gòu)和索結(jié)構(gòu)被廣泛應(yīng)用在橋梁工程中以提高橋梁的跨越能力。拱結(jié)構(gòu)主要被應(yīng)用在拱式組合橋中,本文研究的拱式組合橋是由拱肋、吊桿或立柱、主梁組成的下承式拱橋、中承式拱橋和上承式拱橋。索結(jié)構(gòu)在斜拉橋中有廣泛應(yīng)用,斜拉梁結(jié)構(gòu)是斜拉橋中的基本構(gòu)成單元。為了研究三種拱橋和斜拉梁結(jié)構(gòu)的面內(nèi)自振特性,本文根據(jù)它們的邊界條件和連續(xù)性條件,提出了精細(xì)化的拱橋和斜拉梁的動(dòng)力學(xué)建模理論,利用傳遞矩陣法求解其特征值問題,并對(duì)其面內(nèi)自由振動(dòng)特性進(jìn)行了參數(shù)分析。具體工作如下:(1)根據(jù)下承式拱橋的特點(diǎn),忽略吊桿的質(zhì)量,下承式拱橋的力學(xué)模型被簡化成拱-彈簧-梁組合體系;谶吔鐥l件,利用哈密頓原理推導(dǎo)出了拱-彈簧-吊桿組合體系的面內(nèi)自由振動(dòng)的控制微分方程,并通過傳遞矩陣法求解其特征值問題。與此同時(shí),為了驗(yàn)證本文所提出理論和方法的準(zhǔn)確性,用有限元軟件ANSYS建立了下承式拱橋相應(yīng)的有限元模型。最后用本文理論和方法對(duì)下承式拱橋面內(nèi)自由振動(dòng)特性進(jìn)行了參數(shù)分析。(2)將以上簡化的拱-彈簧-梁力學(xué)模型,以及研究理論和方法應(yīng)用到上承式拱橋和中承式拱橋面內(nèi)自振特性的研究中,用有限元軟件ANSYS驗(yàn)證其適用性。最后用本文理論和方法對(duì)上承式拱橋和中承式拱橋面內(nèi)自振特性進(jìn)行參數(shù)分析,對(duì)比分析三種拱橋的面內(nèi)自由振動(dòng)特性。(3)從是否考慮拉索垂度兩方面建立了CFRP索斜拉梁面內(nèi)自由振動(dòng)的建模理論?紤]拉索垂度時(shí),從微元體的動(dòng)力平衡出發(fā),建立了斜拉梁中拉索和梁面內(nèi)自由振動(dòng)控制微分方程,根據(jù)邊界條件和連續(xù)性條件得到有垂度斜拉梁面內(nèi)自由振動(dòng)的特征方程。不考慮拉索垂度時(shí),利用張緊弦和歐拉梁振動(dòng)理論分別描述斜拉梁中索和梁的振動(dòng),根據(jù)索、梁結(jié)合處的動(dòng)態(tài)平衡條件和邊界條件,利用傳遞矩陣法得到無垂度斜拉梁面內(nèi)自由振動(dòng)的特征方程。兩種方法都進(jìn)行了無量綱化,并用有限元軟件ANSYS對(duì)其準(zhǔn)確性進(jìn)行了驗(yàn)證,最后對(duì)斜拉梁面內(nèi)自由振動(dòng)特性進(jìn)行參數(shù)分析。本文不僅首次提出了研究上、中、下承式三種拱橋整橋面內(nèi)自由振動(dòng)特性的通用簡化動(dòng)力學(xué)模型(拱-彈簧-梁組合體系)和建模理論,而且利用簡單的張緊弦和歐拉梁振動(dòng)理論并考慮邊界條件和連續(xù)性條件提出了斜拉梁的動(dòng)力學(xué)建模理論。兩種研究方法不僅將復(fù)雜的工程實(shí)際問題簡單化,而且又能反應(yīng)工程實(shí)際中三種拱橋和斜拉梁應(yīng)有的面內(nèi)自由振動(dòng)特性。最后的參數(shù)分析能為三種拱橋和斜拉梁的建造提供一些參考。
[Abstract]:Arch structure and cable structure are widely used in bridge engineering to improve the span ability of bridge. Arch structure is mainly used in arch composite bridge. The arch composite bridge studied in this paper is a through arch bridge composed of arch ribs, suspenders or columns, and main beams. The cable structure is widely used in cable-stayed bridges, and the cable-stayed beam structure is the basic element of cable-stayed bridges. In order to study the in-plane natural vibration characteristics of three kinds of arch bridges and cable-stayed girder structures, According to their boundary conditions and continuity conditions, a detailed dynamic modeling theory of arch bridge and cable-stayed beam is presented in this paper. The eigenvalue problem is solved by transfer matrix method. According to the characteristics of the through arch bridge and ignoring the quality of the suspenders, the mechanical model of the through arch bridge is simplified into a composite system of arch spring and beam. Based on the boundary condition, the mechanical model of the through arch bridge is simplified. By using Hamiltonian principle, the governing differential equation of in-plane free vibration of arched spring-boom composite system is derived, and its eigenvalue problem is solved by transfer matrix method. In order to verify the accuracy of the theory and method proposed in this paper, The finite element model of the through arch bridge is established by using the finite element software ANSYS. Finally, the mechanical model of the through arch bridge is simplified by using the theory and method of this paper and the parameter analysis of the in-plane free vibration characteristics of the through arch bridge. The theory and method are applied to the study of the in-plane natural vibration characteristics of the upper arch bridge and the middle through arch bridge. The finite element software ANSYS is used to verify its applicability. Finally, the in-plane natural vibration characteristics of the upper arch bridge and the middle through arch bridge are analyzed by using the theory and method in this paper. By comparing and analyzing the in-plane free vibration characteristics of three arch bridges, the modeling theory of the in-plane free vibration of CFRP cable-stayed beam is established from the aspects of whether or not to consider the cable sag. When considering the cable sag, the dynamic balance of the micro-element is considered. The governing differential equations of cable and in-plane free vibration in cable-stayed beams are established. According to the boundary conditions and continuity conditions, the characteristic equations of in-plane free vibration of cable-stayed beams with sag are obtained. The vibration of cable and beam in cable-stayed beam is described by using the theory of tensioning string and Euler beam vibration respectively. According to the dynamic equilibrium condition and boundary condition of cable and beam bond, The characteristic equations of free vibration in plane of cable-stayed beams without sag are obtained by transfer matrix method. Both methods are dimensionless and their accuracy is verified by finite element software ANSYS. Finally, the parameter analysis of the in-plane free vibration of the cable-stayed beam is carried out. A general simplified dynamic model (arch-spring-beam combination system) and modeling theory for the free vibration characteristics of the whole deck of three through arch bridges, Moreover, the dynamic modeling theory of cable-stayed beam is presented by using the simple theory of tension string and Euler beam vibration, considering the boundary condition and continuity condition. It can also reflect the in-plane free vibration characteristics of three kinds of arch bridges and cable-stayed beams in engineering practice. The final parameter analysis can provide some references for the construction of three kinds of arch bridges and cable-stayed beams.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:U441.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王忠建,饒德軍;異形變厚度板的自由振動(dòng)[J];佛山科學(xué)技術(shù)學(xué)院學(xué)報(bào)(自然科學(xué)版);2002年04期
2 武蘭河,李向國,王立彬;圓板軸對(duì)稱自由振動(dòng)的微分容積解法[J];振動(dòng)與沖擊;2003年03期
3 段湘平;;板彈性自由振動(dòng)的等參元分析[J];山西建筑;2006年23期
4 Enrique de la Fuente;;線性結(jié)構(gòu)自由振動(dòng)精確解的有效程序[J];鋼結(jié)構(gòu);2009年01期
5 Sh. Torkamani;H.M. Navazi;A.A. Jafari;M. Bagheri;;正交加勁柱形殼自由振動(dòng)的結(jié)構(gòu)相似性分析[J];鋼結(jié)構(gòu);2009年10期
6 舒恒煜 ,黃震球;不規(guī)則板架自由振動(dòng)頻率計(jì)算方法及其應(yīng)用[J];華中工學(xué)院學(xué)報(bào);1980年S4期
7 李和祥 ,葉仲翹;潛艇艉部穩(wěn)定翼自由振動(dòng)計(jì)算方法的探索[J];艦船科學(xué)技術(shù);1985年10期
8 程忷巽;;(1981—1983)三年來板的橫向自由振動(dòng)研究的動(dòng)態(tài)[J];華水科技情報(bào);1985年01期
9 董利康;鄭效忠;;具有浮動(dòng)輪的汽車車身自由振動(dòng)的計(jì)算[J];山東工業(yè)大學(xué)學(xué)報(bào);1987年02期
10 徐鑒,王林祥;非均勻桿縱向自由振動(dòng)的高頻漸近性質(zhì)[J];甘肅工業(yè)大學(xué)學(xué)報(bào);1989年04期
相關(guān)會(huì)議論文 前10條
1 謝洪陽;;彈性圓板自由振動(dòng)的等參元分析[A];第15屆全國結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(第Ⅰ冊(cè))[C];2006年
2 陳良森;;彈塑性梁的自由振動(dòng)[A];第21屆全國結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集第Ⅰ冊(cè)[C];2012年
3 胡雨村;趙秀麗;;用于薄殼自由振動(dòng)計(jì)算的廣義協(xié)調(diào)元[A];第三屆全國結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(上)[C];1994年
4 劉金喜;馮文杰;姜稚清;;離散支承矩形板的自由振動(dòng)[A];第五屆全國結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(第二卷)[C];1996年
5 周欣竹;鄭建軍;侯典杰;熊軍;;變厚度圓(環(huán))板的非對(duì)稱自由振動(dòng)[A];第七屆全國結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(第Ⅰ卷)[C];1998年
6 蔣寶坤;李映輝;;旋轉(zhuǎn)復(fù)合材料懸臂梁非線性自由振動(dòng)特性研究[A];中國力學(xué)大會(huì)——2013論文摘要集[C];2013年
7 管悅;鐘宏志;;旋轉(zhuǎn)薄殼自由振動(dòng)的弱形式求積元分析[A];北京力學(xué)會(huì)第20屆學(xué)術(shù)年會(huì)論文集[C];2014年
8 袁駟;王永亮;徐俊杰;;二維自由振動(dòng)的有限元線法自適應(yīng)分析新進(jìn)展[A];第22屆全國結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集第Ⅰ冊(cè)[C];2013年
9 嚴(yán)世濤;彭林欣;;波紋夾層板自由振動(dòng)的無網(wǎng)格伽遼金法[A];中國力學(xué)大會(huì)——2013論文摘要集[C];2013年
10 張立達(dá);李世榮;;有限差分求解非均勻梁在軸向力作用下的自由振動(dòng)[A];現(xiàn)代數(shù)學(xué)和力學(xué)(MMM-XI):第十一屆全國現(xiàn)代數(shù)學(xué)和力學(xué)學(xué)術(shù)會(huì)議論文集[C];2009年
相關(guān)博士學(xué)位論文 前2條
1 王珂;基于EEP法的平面變截面桿件自由振動(dòng)自適應(yīng)分析[D];清華大學(xué);2008年
2 呂朝鋒;基于狀態(tài)空間架構(gòu)的微分求積法及其應(yīng)用[D];浙江大學(xué);2006年
相關(guān)碩士學(xué)位論文 前8條
1 賈環(huán)環(huán);任意四邊形板雙板系統(tǒng)的自由振動(dòng)[D];石家莊鐵道大學(xué);2015年
2 解維東;拱橋和斜拉梁動(dòng)力學(xué)建模理論暨面內(nèi)自由振動(dòng)研究[D];湖南大學(xué);2016年
3 張立達(dá);非均勻變截面梁(柱)自由振動(dòng)的差分法求解[D];蘭州理工大學(xué);2010年
4 陳星文;旋轉(zhuǎn)薄殼軸對(duì)稱自由振動(dòng)的漸近分析[D];同濟(jì)大學(xué);2008年
5 趙雪健;平面曲梁自由振動(dòng)的動(dòng)力剛度法研究[D];清華大學(xué);2010年
6 陳旭東;旋轉(zhuǎn)殼自由振動(dòng)的動(dòng)力剛度法研究[D];清華大學(xué);2009年
7 陳凱;應(yīng)用廣義函數(shù)法求解正交各向異性矩形中厚板的自由振動(dòng)[D];西安建筑科技大學(xué);2009年
8 張巖巖;機(jī)電集成靜電行星電機(jī)動(dòng)力學(xué)研究[D];燕山大學(xué);2010年
,本文編號(hào):1668701
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1668701.html