千米級多塔連跨懸索橋中間塔適宜剛度及連跨效應(yīng)研究
本文選題:橋梁工程 切入點(diǎn):多塔連跨懸索橋 出處:《北京交通大學(xué)》2017年博士論文
【摘要】:千米級多塔連跨懸索橋可有效減小錨碇尺寸、大幅降低岸線和土地資源占用、降低航道資源占用、減少深水基礎(chǔ)工程量和船只撞擊概率,具有顯著的經(jīng)濟(jì)、環(huán)保效益,是跨越寬闊水域的最佳橋型之一,發(fā)展前景廣闊。由于在傳統(tǒng)兩塔懸索橋的基礎(chǔ)上增設(shè)了中間塔,千米級多塔連跨懸索橋的結(jié)構(gòu)行為特性將發(fā)生很大的變化,“中間塔效應(yīng)”和“連跨效應(yīng)”是千米級多塔連跨懸索橋工程應(yīng)用中需要重點(diǎn)研究的兩個核心問題。目前,“中間塔效應(yīng)”和“連跨效應(yīng)”的力學(xué)特征、影響規(guī)律尚不明確,計算分析方法需進(jìn)一步深化。本文以泰州長江公路大橋的工程建設(shè)為背景,依托“十一五”國家科技支撐計劃重點(diǎn)項(xiàng)目“多塔連跨懸索結(jié)構(gòu)及工程示范”(2009BAG15B00),重點(diǎn)針對多塔連跨懸索橋的中間塔適宜剛度、偏位計算方法、連跨效應(yīng)等開展研究。主要工作如下:(1)通過數(shù)值分析的方法,研究了不同塔梁連接、中間塔剛度變化對三塔、四塔、五塔懸索橋在活載作用下的中間塔效應(yīng),分析了中間塔剛度變化對跨中撓度和主纜抗滑移系數(shù)的影響規(guī)律。在此基礎(chǔ)上,進(jìn)一步提出了中間塔適宜剛度的取值方法,并討論了-《公路懸索橋設(shè)計規(guī)范》(JTG/TD 65-05-2015)中關(guān)于結(jié)構(gòu)容許變形限值、抗滑移安全系數(shù)參數(shù)取值對多塔連跨懸索橋的適用性。(2)基于撓度理論,建立了多塔懸索橋橋塔簡化受力模型,提出了塔頂縱向水平換算剛度解析計算方法,推導(dǎo)了橋塔偏位的簡化計算公式。采用該簡化計算公式,分析了主纜矢跨比、邊中跨比、橋塔剛度、主纜剛度和恒載等參數(shù)對多塔懸索橋中間塔塔頂最大縱向偏位的影響規(guī)律。(3)基于結(jié)構(gòu)影響線分析方法,通過有限元分析,研究了不同橋塔剛度、纜-梁連接及塔-梁連接型式等結(jié)構(gòu)參數(shù)對三塔懸索橋結(jié)構(gòu)性能的影響。進(jìn)而將橋塔數(shù)量擴(kuò)展到四塔至六塔,進(jìn)一步探討了大跨度多塔懸索橋的連跨效應(yīng)特征。(4)開展1: 80三塔連跨懸索橋的靜動力特性模型試驗(yàn),分析了三塔連跨懸索橋施工階段和成橋階段的結(jié)構(gòu)特征和受力特性。在此基礎(chǔ)上,建立了五塔懸索橋試驗(yàn)?zāi)P?分析了五塔連跨懸索橋成橋階段受力特征和多塔連跨效應(yīng),為數(shù)值分析結(jié)果和解析計算的結(jié)果的驗(yàn)證提供數(shù)據(jù)支持。通過上述研究工作,揭示了中塔剛度、塔梁連接、主纜垂跨比、邊中跨比、恒載變化等對中塔效應(yīng)的影響規(guī)律,提出了綜合考慮加勁梁豎向撓度控制和主纜抗滑移的中間塔適宜剛度區(qū)間取值方法,推導(dǎo)了塔頂縱向水平偏位的簡化計算公式,掌握了多塔連跨懸索橋“連跨效應(yīng)”特征。研究成果為突破千米級多塔連跨懸索橋計算分析和設(shè)計建造的關(guān)鍵制約、支撐該類工程的建設(shè)起到了重要作用。
[Abstract]:Multi-tower and multi-span suspension bridges of kilometer scale can effectively reduce the Anchorage size, greatly reduce the occupation of shoreline and land resources, reduce the occupation of waterway resources, reduce the quantity of deep-water foundation works and the probability of ship collision, and have remarkable economic and environmental benefits. Is one of the best bridges across wide waters, and has a bright future. Because of the addition of the middle tower to the traditional two-tower suspension bridge, The structural behavior of the multi-tower and span suspension bridges of kilometer scale will change greatly. The "intermediate tower effect" and "continuous span effect" are the two key problems that need to be studied in the engineering application of the multi-tower continuous span suspension bridge of the kilometer scale. The mechanical characteristics of "intermediate tower effect" and "continuous span effect", The law of influence is not clear, and the method of calculation and analysis needs to be further deepened. This paper takes the construction of Taizhou Changjiang River Highway Bridge as the background. Relying on the key project of "Multi-tower continuous span suspension structure and engineering demonstration" in the 11th Five-Year Plan of the National Science and Technology support Plan, this paper focuses on the appropriate stiffness of the middle tower of the multi-tower continuous span suspension bridge, and the calculation method of the deflection position, especially in view of the appropriate stiffness of the middle tower of the multi-tower continuous span suspension bridge. The main work is as follows: 1) through numerical analysis, the effects of different tower girder connections and stiffness changes of middle towers on three towers, four towers, five towers suspension bridges under live load are studied. The influence of the stiffness of the intermediate tower on the midspan deflection and the anti-slip coefficient of the main cable is analyzed. On the basis of this, the method of determining the appropriate stiffness of the intermediate tower is put forward. The applicability of JTG / TD65-05-2015) about the allowable deformation limit and the safety factor of anti-slip to multi-tower and multi-span suspension bridge is discussed. Based on the deflection theory, the simplified stress model of the tower of multi-tower suspension bridge is established. In this paper, an analytical method for calculating the longitudinal horizontal conversion stiffness of the tower is presented, and a simplified formula for calculating the deflection of the bridge tower is derived. The main cable span ratio, the side to middle span ratio, the bridge tower stiffness are analyzed by using the simplified calculation formula. The influence of the main cable stiffness and dead load on the maximum longitudinal deflection of the top of the middle tower of a multi-tower suspension bridge is studied. Based on the structural influence line analysis method, the stiffness of different towers is studied by finite element analysis. The influence of structural parameters such as cable-beam connection and tower-beam connection on the structural performance of three-tower suspension bridge. Further, the number of towers is extended to four to six towers, The characteristics of continuous span effect of long-span multi-tower suspension bridge are further discussed. (4) the static and dynamic model test of 1: 80 three-tower suspension bridge is carried out. The structural and mechanical characteristics of the three-tower continuous span suspension bridge during the construction and completion stages are analyzed. Based on this, the test model of the five-tower suspension bridge is established, and the stress characteristics and the multi-tower continuous span effect of the five-tower continuous span suspension bridge are analyzed. This paper provides data support for the verification of numerical analysis results and analytical calculation results. Through the above research work, the effects of mid-tower stiffness, tower beam connection, main cable vertical span ratio, side-to-middle span ratio, dead load change on the mid-tower effect are revealed. In this paper, a method for determining the appropriate stiffness interval of the intermediate tower considering the vertical deflection control of stiffened beam and the resistance of the main cable to sliding is put forward, and the simplified formula for calculating the vertical horizontal deflection of the tower top is derived. The characteristics of "continuous span effect" of multi-tower and multi-span suspension bridges are grasped. The research results play an important role in breaking through the key constraints of calculation, analysis, design and construction of multi-tower and multi-span suspension bridges of kilometer scale, and supporting the construction of this kind of projects.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:U448.25
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李萬恒;王元豐;孫永明;吳寒亮;李鵬飛;;結(jié)構(gòu)連接對三塔懸索橋性能的影響線分析[J];哈爾濱工業(yè)大學(xué)學(xué)報;2017年02期
2 李萬恒;王元豐;李鵬飛;吳寒亮;;三塔懸索橋橋塔適宜剛度體系研究[J];土木工程學(xué)報;2017年01期
3 金泊含;王立彬;王鴻;郭瀟藝;;基于撓度理論的三塔四跨懸索橋靜力特性分析[J];南京林業(yè)大學(xué)學(xué)報(自然科學(xué)版);2016年03期
4 柴生波;肖汝誠;王秀蘭;任翔;;多塔懸索橋主纜與鞍座抗滑解析計算方法[J];中國公路學(xué)報;2016年04期
5 李翠霞;;武漢鸚鵡洲長江大橋橋塔設(shè)計[J];橋梁建設(shè);2014年05期
6 張學(xué)義;譚紅梅;肖汝誠;柴生波;;主纜為懸鏈線的多塔懸索橋的中塔剛度計算[J];華中科技大學(xué)學(xué)報(自然科學(xué)版);2014年10期
7 韓大章;吉林;陳艾榮;華新;;泰州大橋中塔設(shè)計關(guān)鍵技術(shù)研究綜述[J];公路;2013年11期
8 楊光武;;復(fù)雜河勢條件下的馬鞍山長江大橋橋型方案論證[J];橋梁建設(shè);2013年01期
9 陳策;鐘建馳;;三塔懸索橋中塔彈性縱向約束對結(jié)構(gòu)設(shè)計的影響[J];公路;2012年06期
10 柴生波;肖汝誠;孫斌;;雙纜懸索橋體系的力學(xué)特性(Ⅱ)[J];華南理工大學(xué)學(xué)報(自然科學(xué)版);2012年02期
相關(guān)會議論文 前1條
1 尹冀川;;日本O麐冧TS介紹[A];船舶通信導(dǎo)航學(xué)術(shù)會議(1993)論文集[C];1993年
相關(guān)重要報紙文章 前2條
1 楊秀;張雯雯;田娜娜;;三塔四跨雙層鋼桁梁懸索橋?yàn)槭澜缡讋?chuàng)[N];中國交通報;2016年
2 陳家根;;南京長江四橋初步設(shè)計方案敲定[N];新華日報;2007年
相關(guān)碩士學(xué)位論文 前5條
1 吳勇;基于重力剛度法的大跨度懸索橋結(jié)構(gòu)靜力特性理論分析[D];南京林業(yè)大學(xué);2015年
2 肖剛;三塔懸索橋主纜與鞍座抗滑移設(shè)計研究[D];西南交通大學(xué);2015年
3 吳向男;大跨多塔懸索橋結(jié)構(gòu)體系研究[D];長安大學(xué);2010年
4 朱本瑾;多塔懸索橋的結(jié)構(gòu)體系研究[D];同濟(jì)大學(xué);2007年
5 王萍;多塔連續(xù)體系懸索橋靜動力特性的研究[D];西南交通大學(xué);2007年
,本文編號:1667130
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1667130.html