淺埋隧道開挖與既有建筑基礎(chǔ)荷載相互影響的模型試驗(yàn)和理論計(jì)算研究
本文選題:模型試驗(yàn) 切入點(diǎn):數(shù)值分析 出處:《北京交通大學(xué)》2015年博士論文
【摘要】:通過(guò)模型試驗(yàn)、理論分析及數(shù)值模擬,研究了淺埋隧道開挖與既有建筑基礎(chǔ)荷載的相互作用,具體的研究?jī)?nèi)容和主要成果如下: (1)建立了平面應(yīng)變模型試驗(yàn)系統(tǒng),其中包括地層模型、樁基荷載模型、箱基荷載模型、淺埋隧道開挖模型和支護(hù)模型,以及樁基荷載或箱基荷載、地層壓力、地層沉降、隧道支護(hù)應(yīng)變的量測(cè)裝置。①進(jìn)行了一系列地層損失模型試驗(yàn),分析了地表最大沉降位移及沉降槽寬度參數(shù)與地中最大沉降位移及沉降槽寬度參數(shù)的函數(shù)關(guān)系;②針對(duì)不同水平、豎直位置的既有樁基荷載進(jìn)行了一系列隧道開挖模型試驗(yàn)及數(shù)值模擬,分析了既有樁基荷載對(duì)鄰近淺埋隧道開挖引起地層壓力重分布、地層沉降及隧道支護(hù)內(nèi)力的影響特征,結(jié)果表明:對(duì)于樁徑和水平相對(duì)距離都相同但樁長(zhǎng)不同的樁基荷載,樁長(zhǎng)與隧道埋深相同時(shí),對(duì)隧道開挖效應(yīng)影響最大;對(duì)于樁徑和樁長(zhǎng)都相同的樁基荷載,對(duì)隧道開挖效應(yīng)的影響程度隨樁基中心與隧道軸線水平距離的減小而增大;當(dāng)樁基中心與隧道軸線水平距離和隧道直徑比值介于0.5-4時(shí),樁基荷載對(duì)隧道開挖效應(yīng)影響較大;③針對(duì)不同水平、豎向位置的既有箱基荷載進(jìn)行了一系列隧道開挖模型試驗(yàn)及數(shù)值模擬,結(jié)果表明:水平距離、箱基荷載都相同但埋深不同的箱基,對(duì)隧道開挖效應(yīng)的影響程度隨著箱基埋深的增加而增大,當(dāng)箱底埋置深度超過(guò)隧道拱頂時(shí),對(duì)隧道開挖效應(yīng)的影響程度隨箱基埋深的增加而減。幌浠裰蒙疃认嗤骄嚯x不同,對(duì)隧道開挖效應(yīng)的影響程度隨箱基邊緣與隧道軸線水平距離的減小而增大,當(dāng)箱基邊緣與隧道軸線水平距離和隧道直徑比值介于0.5-4.0時(shí),箱基荷載對(duì)隧道開挖效應(yīng)的影響較大; (2)建立了地層損失的時(shí)間函數(shù)模型,結(jié)合薩格塞塔解,給出了預(yù)測(cè)淺埋隧道開挖引起地表沉降隨時(shí)間及施工參數(shù)變化的數(shù)學(xué)表達(dá)式,通過(guò)等效簡(jiǎn)化模型,推導(dǎo)了隧道全斷面開挖、臺(tái)階法開挖及其它分部開挖引起地層位移的解析表達(dá)式,計(jì)算分析了自由地層及承載地層開挖速度、臺(tái)階間距、施工工序及地表沉降速度系數(shù)對(duì)地表沉降的影響特征; (3)提出了建筑基礎(chǔ)荷載地層承載區(qū)的概念,推導(dǎo)了樁基荷載和箱基荷載地層的位移場(chǎng);應(yīng)用沃盧杰-布克位移解,分析了隧道開挖對(duì)樁基或箱基地層承載區(qū)的影響;通過(guò)數(shù)值模擬,分析了隧道中心與建筑基礎(chǔ)荷載的水平距離、隧道埋深、隧道開挖半徑及隧道開挖進(jìn)度對(duì)建筑基礎(chǔ)地層承載區(qū)的影響特征,結(jié)果表明:通過(guò)改變隧道施工參數(shù),建筑基礎(chǔ)地層承載區(qū)的形狀與范圍在隧道的開挖方向、水平方向及豎直方向都有不同程度的變化。而這些變化規(guī)律的得出,將對(duì)隧道的設(shè)計(jì)與施工具有指導(dǎo)意義。
[Abstract]:Through model test, theoretical analysis and numerical simulation, the interaction between excavation of shallow tunnel and load of existing building foundation is studied. The specific research contents and main results are as follows:. 1) the plane strain model test system is established, which includes stratum model, pile foundation load model, box foundation load model, shallow tunnel excavation model and support model, pile foundation load or box foundation load, formation pressure, stratum settlement. A series of model tests of ground loss are carried out by measuring the strain of tunnel support. The function relationship between the maximum subsidence displacement and the width parameter of the settlement trough and the maximum settlement displacement and the width parameter of the settlement trough in the ground is analyzed. 2 the relationship between the maximum settlement displacement and the width parameter of the settlement trough in the ground is analyzed according to different levels. A series of tunnel excavation model tests and numerical simulation are carried out on the existing pile foundation load in vertical position. The influence characteristics of the existing pile foundation load on the formation pressure redistribution, stratum settlement and tunnel support internal force caused by the excavation of the adjacent shallow tunnel are analyzed. The results show that for the pile with the same diameter and horizontal distance but different pile length, when the length of pile is the same as the depth of tunnel, the effect of tunnel excavation is the biggest, and the load of pile with the same diameter and length of pile is the most important. The degree of influence on tunnel excavation effect increases with the decrease of horizontal distance between the center of pile foundation and the axis of tunnel, and when the horizontal distance between the center of pile foundation and the axis of tunnel and the ratio of tunnel diameter are between 0.5-4, Pile foundation load has great influence on tunnel excavation effect. A series of tunnel excavation model tests and numerical simulations have been carried out for the existing box foundation loads at different levels and vertical positions. The results show that the horizontal distance is different. The influence of the box foundation with the same load but different buried depth on the excavation effect increases with the increase of the burying depth of the box foundation. When the buried depth of the bottom of the box exceeds the vault of the tunnel, The influence degree of the tunnel excavation effect decreases with the increase of the buried depth of the box foundation, and the influence degree on the tunnel excavation effect increases with the decrease of horizontal distance between the box foundation edge and the tunnel axis, but the horizontal distance of the box foundation is the same as the horizontal distance between the box foundation and the tunnel axis. When the horizontal distance between box foundation edge and tunnel axis and the ratio of tunnel diameter are between 0.5-4.0, the influence of box foundation load on tunnel excavation effect is greater. (2) the time function model of formation loss is established, and the mathematical expression for predicting the variation of surface subsidence with time and construction parameters caused by shallow tunnel excavation is given, and the equivalent simplified model is given. The analytical expressions of stratum displacement caused by full section excavation, step method excavation and other partial excavation are derived, and the excavation velocity and step spacing of free and bearing strata are calculated and analyzed. The characteristics of the influence of the construction procedure and the coefficient of the surface settlement velocity on the surface settlement; (3) the concept of load-bearing zone of building foundation is put forward, the displacement field of pile foundation and box foundation is deduced, and the influence of tunnel excavation on the bearing zone of pile foundation or box base layer is analyzed by using Voluget-Buke displacement solution. Through numerical simulation, the influence characteristics of the horizontal distance between the tunnel center and the building foundation load, the tunnel burial depth, the tunnel excavation radius and the tunnel excavation schedule on the bearing zone of the building foundation are analyzed. The results show that the tunnel construction parameters are changed. The shape and range of the bearing area of the stratum of building foundation have varying degrees in the excavation direction, horizontal direction and vertical direction of the tunnel, and the conclusion of these changing rules will be of guiding significance to the design and construction of the tunnel.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:U452;TU470
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王建秀;田普卓;付慧仙;朱雁飛;;基于地層損失的盾構(gòu)隧道地面沉降控制[J];地下空間與工程學(xué)報(bào);2012年03期
2 蘇潔;張頂立;牛曉凱;;地鐵淺埋暗挖法穿越既有橋梁施工變形控制[J];北京工業(yè)大學(xué)學(xué)報(bào);2009年05期
3 程展林,吳忠明,徐言勇;砂基中泥漿盾構(gòu)法隧道施工開挖面穩(wěn)定性試驗(yàn)研究[J];長(zhǎng)江科學(xué)院院報(bào);2001年05期
4 侯學(xué)淵,廖少明;盾構(gòu)隧道沉降預(yù)估[J];地下工程與隧道;1993年04期
5 關(guān)永平;郭龍;李云龍;劉炎炎;張靖杰;宋建;;城市地鐵開挖對(duì)相鄰地下管線影響的數(shù)值分析[J];水利與建筑工程學(xué)報(bào);2010年02期
6 劉干斌,謝康和,施祖元;粘彈性土體中深埋圓形隧道的應(yīng)力和位移分析[J];工程力學(xué);2004年05期
7 彭海明,彭振斌,韓金田,安偉剛,劉鐵雄;巖性相似材料研究[J];廣東土木與建筑;2002年12期
8 姚愛軍;楊學(xué)嘉;;盾構(gòu)隧道側(cè)穿筏板基礎(chǔ)變形響應(yīng)與安全評(píng)估[J];地下空間與工程學(xué)報(bào);2012年04期
9 歐陽(yáng)文彪;丁文其;謝東武;;考慮建筑剛度的盾構(gòu)施工引致沉降計(jì)算方法[J];地下空間與工程學(xué)報(bào);2013年01期
10 楊彩弘,王永巖,魏佳;軟巖蠕變過(guò)程中單相滲流固流耦合及數(shù)學(xué)模型[J];黑龍江科技學(xué)院學(xué)報(bào);2004年05期
,本文編號(hào):1664056
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1664056.html