庫(kù)水位驟降對(duì)公路邊坡的穩(wěn)定性研究
本文選題:庫(kù)區(qū)公路 切入點(diǎn):邊坡 出處:《長(zhǎng)安大學(xué)》2015年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:庫(kù)區(qū)公路由于其所處地區(qū)地形地貌、水文地質(zhì)條件、自然人文環(huán)境的制約,導(dǎo)致其工程環(huán)境往往相比一般公路建設(shè)更為復(fù)雜。庫(kù)區(qū)公路的穩(wěn)定性不但受到巖土性質(zhì)、邊坡形式的影響,還受到庫(kù)區(qū)水位不斷漲落的影響,處治不當(dāng)極易發(fā)生失穩(wěn)破壞。本文主要采用FLAC3D數(shù)值方法模擬得到了庫(kù)區(qū)公路邊坡在不同工況下的穩(wěn)定性變化,并利用FLAC3D建立流固耦合模型,采用強(qiáng)度折減法,得到了庫(kù)水位驟降過(guò)程中邊坡的穩(wěn)定系數(shù)變化及潛在的破壞形式的變化。根據(jù)邊坡穩(wěn)定性模擬的結(jié)果,提出了庫(kù)區(qū)邊坡的加固處治建議,對(duì)實(shí)際工程具有一定的指導(dǎo)意義。本文主要取得了以下的研究結(jié)論:(1)分析了庫(kù)水位在下降時(shí),非穩(wěn)定滲流方程的建立,坡體內(nèi)浸潤(rùn)線的確立及庫(kù)水驟降緩降對(duì)邊坡穩(wěn)定的影響。研究表明:長(zhǎng)期高水位后的驟降對(duì)迎水坡是最不利的,主要是飽和坡體內(nèi)的孔隙水壓力來(lái)不及消散而形成向坡外滲流所致,而且多發(fā)生在浸潤(rùn)線高、透水性差的較陡粘性土質(zhì)邊坡上。(2)利用FLAC3D軟件建立數(shù)值模型,采用強(qiáng)度折減法,研究了不同工況下庫(kù)水位漲落,尤其是當(dāng)庫(kù)區(qū)水位發(fā)生驟降時(shí),邊坡穩(wěn)定性的變化。結(jié)果表明:庫(kù)區(qū)公路邊坡在施工期的穩(wěn)定性主要受到邊坡土體的自重和坡面形式的影響;庫(kù)區(qū)公路邊坡在正常蓄水期由于水的滲透力作用往往安全系數(shù)得到提高;在庫(kù)水位發(fā)生驟降后,邊坡的安全系數(shù)迅速減小。經(jīng)放坡和拋石加固處治后,再次對(duì)庫(kù)區(qū)公路邊坡在不同工況的穩(wěn)定性進(jìn)行了模擬,結(jié)果表明安全系數(shù)得到了較大的提高,確保了公路的正常運(yùn)行。(3)對(duì)水位驟降過(guò)程中的邊坡安全系數(shù)的變化進(jìn)行了分析。研究表明:在此過(guò)程中安全系數(shù)隨著水位下降呈現(xiàn)先減后略增的趨勢(shì)。在最危險(xiǎn)水面高度處,邊坡的水平位移、豎直位移、整體位移等達(dá)到了最大值。因?yàn)槠聝?nèi)水體來(lái)不及排出,與坡外水體形成的高水位差,使得下部坡體和坡腳有向外“剪出”的潛在破壞,此時(shí)的邊坡穩(wěn)定性最差。(4)利用FLAC3D軟件對(duì)經(jīng)放坡和拋石加固處治后的庫(kù)區(qū)公路邊坡,在不同工況下的穩(wěn)定性進(jìn)行了模擬,結(jié)果表明:經(jīng)加固處治后,不同工況下其安全系數(shù)均得到了較大的提高,但上部可能出現(xiàn)局部失穩(wěn),應(yīng)采取必要措施。對(duì)于受庫(kù)水影響的高陡邊坡,建議采用放坡加固,且進(jìn)行上部路基的加固和蓄水位以下的坡面防護(hù);對(duì)于受庫(kù)水嚴(yán)重影響的浸水路基,可采用擋土墻加固,且應(yīng)注意設(shè)置排水系統(tǒng)。
[Abstract]:Because of the constraints of topography, hydrogeology and natural and humanistic environment, the engineering environment of the highway in the reservoir area is often more complex than that of the general highway construction, and the stability of the highway in the reservoir area is not only affected by the rock and soil properties, but also by the stability of the highway in the reservoir area. The influence of slope form is also affected by the constant fluctuation of water level in the reservoir area, and the improper treatment is very easy to occur instability damage. In this paper, FLAC3D numerical method is mainly used to simulate the stability changes of the highway slope in the reservoir area under different working conditions. The fluid-solid coupling model is established by FLAC3D, and the variation of slope stability coefficient and potential failure form during sudden drop of reservoir water level are obtained by using strength reduction method. According to the results of slope stability simulation, This paper puts forward some suggestions for reinforcement and treatment of slope in the reservoir area, which is of certain guiding significance for practical engineering. The following conclusions are obtained in this paper: 1) the establishment of unsteady seepage equation when the water level of reservoir is falling is analyzed. The establishment of the infiltration line in the slope and the influence of the sudden drop of reservoir water on the slope stability. The study shows that the sudden drop after a long period of high water level is the most disadvantageous to the slope facing the water. The main reason is that the pore water pressure in the saturated slope can not be dissipated and the seepage is formed out of the slope, and mostly occurs on the steep viscous soil slope with high infiltration line and poor permeability.) the numerical model is established by using FLAC3D software, and the strength reduction method is adopted. The fluctuation of reservoir water level under different working conditions is studied, especially when the water level of reservoir area drops suddenly, the stability of highway slope in reservoir area is mainly affected by the gravity of slope soil and the form of slope surface during the construction period. During the normal storage period, the safety factor of the highway slope in the reservoir area is often improved due to the effect of water permeability, and the safety factor of the slope decreases rapidly after the sudden drop of the reservoir water level. Thirdly, the stability of highway slope in reservoir area under different working conditions is simulated, and the results show that the safety factor has been greatly improved. The variation of slope safety factor during the sudden drop of water level is analyzed. The results show that the safety factor decreases first and then increases with the decrease of water level in this process. The horizontal displacement, vertical displacement, and overall displacement of the slope have reached the maximum value. Because the water in the slope cannot be discharged without time, the difference between the high water level of the water body outside the slope and the water body outside the slope makes the lower slope body and the foot of the slope have the potential damage of "shearing out" outwards. At this time, the slope stability is the worst. The stability of the reservoir area highway slope strengthened by sloping and riprap is simulated by using FLAC3D software. The results show that: after strengthening and treating, the stability of the slope under different conditions is simulated. The safety coefficient has been greatly improved under different working conditions, but the local instability may occur in the upper part, so the necessary measures should be taken. For the high and steep slope affected by reservoir water, it is suggested to reinforce the slope by sloping. The reinforcement of the upper subgrade and the protection of the slope below the storage water level, the retaining wall can be used to reinforce the flooded roadbed which is seriously affected by the reservoir water, and the drainage system should be set up.
【學(xué)位授予單位】:長(zhǎng)安大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:U416.14
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 莫偉偉;徐平;丁秀麗;;庫(kù)水位漲落對(duì)滑坡穩(wěn)定性影響研究進(jìn)展[J];地下空間與工程學(xué)報(bào);2006年06期
2 鄭穎人,時(shí)衛(wèi)民,劉文平,劉明維,王敬林;三峽庫(kù)區(qū)滑坡穩(wěn)定分析中幾個(gè)問(wèn)題的研究[J];重慶建筑;2005年06期
3 徐基立;楊錫武;范亮;;浸水高路堤穩(wěn)定性試驗(yàn)研究[J];公路;2013年05期
4 許有飛;鄭治;戴生春;;庫(kù)岸公路中的浸水高填路堤設(shè)計(jì)[J];廣東公路交通;2013年05期
5 傅文華,韋友道;百色水利樞紐水庫(kù)誘發(fā)地震危險(xiǎn)性分析[J];廣西水利水電;2003年04期
6 劉娟奇;王志強(qiáng);梁收運(yùn);;庫(kù)水位下降對(duì)新集水庫(kù)均質(zhì)土壩滲流及穩(wěn)定性影響分析[J];水利與建筑工程學(xué)報(bào);2014年06期
7 杜黨生;;路基穩(wěn)定性分析與加固[J];科技視界;2012年17期
8 時(shí)衛(wèi)民,鄭穎人;庫(kù)水位下降情況下滑坡的穩(wěn)定性分析[J];水利學(xué)報(bào);2004年03期
9 雷迪;;庫(kù)岸邊坡穩(wěn)定性影響因素敏感性分析[J];人民長(zhǎng)江;2014年S2期
10 張衛(wèi)民;陳蘭云;;地下水位線對(duì)土坡穩(wěn)定的影響分析[J];巖石力學(xué)與工程學(xué)報(bào);2005年S2期
相關(guān)博士學(xué)位論文 前1條
1 郭健;庫(kù)水作用下堆積體滑坡促滑治理的過(guò)程控制研究[D];成都理工大學(xué);2014年
相關(guān)碩士學(xué)位論文 前7條
1 劉小波;三峽庫(kù)區(qū)邊坡穩(wěn)定性評(píng)價(jià)系統(tǒng)研究與實(shí)現(xiàn)[D];電子科技大學(xué);2010年
2 陽(yáng)琳;水位驟降情況下的土質(zhì)邊坡穩(wěn)定性分析[D];華南理工大學(xué);2011年
3 吉鋒;大渡河大崗山水庫(kù)巖質(zhì)岸坡穩(wěn)定性研究[D];成都理工大學(xué);2005年
4 眭封云;庫(kù)區(qū)公路邊坡穩(wěn)定性分析[D];長(zhǎng)安大學(xué);2006年
5 牛紅梅;瓦屋山水電站環(huán)庫(kù)區(qū)移民場(chǎng)地邊坡穩(wěn)定性分析[D];西南交通大學(xué);2008年
6 李星;基于強(qiáng)度折減法的高填方浸水路堤穩(wěn)定性研究[D];西南交通大學(xué);2012年
7 張廷國(guó);基于FLAC3D的庫(kù)岸路基邊坡穩(wěn)定性分析[D];重慶交通大學(xué);2013年
,本文編號(hào):1642608
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1642608.html