高填方路堤沉降預(yù)估模型對(duì)比分析
本文關(guān)鍵詞: 高速公路 高填方路堤 虛擬儀器 變形沉降 試驗(yàn)監(jiān)測(cè) 數(shù)值模擬 出處:《湖北工業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:交通對(duì)于國(guó)民經(jīng)濟(jì)有先導(dǎo)和基礎(chǔ)的作用,政府由始至終發(fā)展經(jīng)濟(jì)的重點(diǎn)都是交通運(yùn)輸,因此公路建設(shè)是國(guó)家基礎(chǔ)建設(shè)的重中之重。十漫高速公路是位于湖北境內(nèi)的最西段,它起自十堰市許家棚,接襄十高速公路,途徑鄂陜交界處的漫川關(guān),止于商州高速公路。全長(zhǎng)107.136公里。項(xiàng)目由于多種因素的影響要具備高要求的施工技術(shù)。一是地形地質(zhì)特殊。整個(gè)項(xiàng)目多處存在滑坡、崩塌等不良地質(zhì)情況。二是工程技術(shù)復(fù)雜,質(zhì)量控制難度大。四是施工條件艱難。施工區(qū)域遠(yuǎn)離城區(qū),物資調(diào)運(yùn)困難。全線地表巖石風(fēng)化程度較嚴(yán)重,但下部巖石完整性一般較好。詳細(xì)研究了高填方路堤的監(jiān)測(cè)方法和沉降規(guī)律,并為預(yù)測(cè)路堤工后沉降的模型做了深入研究。本文研究?jī)?nèi)容包括:(1)基于虛擬儀器的研究,針對(duì)傳統(tǒng)監(jiān)測(cè)方法的不足,設(shè)計(jì)了一套高填方路堤實(shí)時(shí)監(jiān)測(cè)系統(tǒng),擬選傳感器采用傳感器,傳輸系統(tǒng)采用了GPRS和北斗衛(wèi)星導(dǎo)航系統(tǒng),并將兩種傳輸系統(tǒng)技術(shù)融合,提高了虛擬儀器系統(tǒng)采集數(shù)據(jù)的能力,保障了監(jiān)測(cè)的穩(wěn)定性。(2)本章依托十漫高速公路建設(shè)項(xiàng)目,結(jié)合工程實(shí)際情況,選取有代表性的幾個(gè)路段進(jìn)行研究,其中包括K29+400~500標(biāo)段的全填方路堤,K32+570~690標(biāo)段的超高填方路堤,K36+660~900標(biāo)段的填方路堤,K47+500~600和K47+700~900標(biāo)段的填方路堤作為研究對(duì)象進(jìn)行沉降試驗(yàn),包括分層路基沉降剖面沉降儀觀測(cè),路基沉降樁測(cè)試等。通過(guò)對(duì)沉降的實(shí)驗(yàn)數(shù)據(jù)的整理和分析,得到了高填方路堤的總沉降量的構(gòu)成,工后沉降的構(gòu)成以及影響高填方路堤沉降的因素,并深入分析了路基沉降機(jī)理,為以后山區(qū)的高填方路堤的沉降做一定程度上的參考。(3)在建立高填方路基沉降預(yù)測(cè)模型的基礎(chǔ)上,根據(jù)沉降試驗(yàn)的實(shí)測(cè)資料,運(yùn)用Logistic增長(zhǎng)模型,指數(shù)模型,對(duì)數(shù)模型以及Compertz成長(zhǎng)模型對(duì)高填方路堤沉降量預(yù)測(cè)結(jié)果進(jìn)行對(duì)比分析,并建立Logistic—Compertz的組合成長(zhǎng)預(yù)測(cè)模型,Logistic增長(zhǎng)預(yù)測(cè)模型能夠收斂于一點(diǎn),Compertz成長(zhǎng)預(yù)測(cè)模型隨時(shí)間的增長(zhǎng)沉降量無(wú)限值,兩者可以進(jìn)行較好的互補(bǔ)。最后利用Logistic增長(zhǎng)模型的收斂趨勢(shì),幫助組合模型確定收斂時(shí)間,再依據(jù)計(jì)算出的組合模型公式分別預(yù)測(cè)各監(jiān)測(cè)點(diǎn)的最終沉降量。
[Abstract]:Traffic plays a leading and fundamental role in the national economy. The government's emphasis in developing the economy from beginning to end is transportation, so highway construction is the top priority of national infrastructure. Shi-man Expressway is the westernmost section in Hubei Province. It started from Xujiapeng, Shiyan City, followed by Xiang-Shi Expressway, and passed through the Manchuan pass at the junction of Hubei and Shaanxi. It stops at Shangzhou Expressway. The total length is 107.136 kilometers. The project must have high requirement construction technology because of the influence of many factors. First, the topographic geology is special. There are some bad geological conditions such as landslide and collapse in many places in the whole project. Second, the engineering technology is complex. Quality control is very difficult. Fourth, the construction conditions are difficult. The construction area is far away from the urban area, and the transfer of materials is difficult. The weathering degree of the surface rock on the whole line is serious. However, the integrity of the lower part of the embankment is generally good. The monitoring method and settlement law of the high embankment are studied in detail, and the model of predicting the settlement after the construction of the embankment is studied in depth. The research contents of this paper include: 1) the research based on virtual instrument. Aiming at the deficiency of traditional monitoring method, a real-time monitoring system for high fill embankment is designed. The sensor is chosen, the GPRS and Beidou satellite navigation system are adopted in the transmission system, and the technology of the two transmission systems is combined. The ability of virtual instrument system to collect data is improved, and the stability of monitoring is guaranteed.) in this chapter, based on the construction project of Shi-Man Expressway, several representative sections of highway are selected for research, in combination with the actual situation of the project. The settlement tests were carried out on the embankments including the full fill embankment K32 570,690, the super-high fill embankment K36,660,900, the embankment K47 500600 and the embankment K47,700,900, as the object of study, including the observation of the settlement profile settlement of the layered subgrade. Through the analysis of the experimental data, the composition of the total settlement of the high fill embankment, the composition of the post-construction settlement and the factors affecting the settlement of the high fill embankment are obtained. The mechanism of subgrade settlement is analyzed in depth, which provides a reference for the settlement of high embankment in mountainous area to a certain extent. On the basis of establishing the settlement prediction model of high embankment, the Logistic growth model is used according to the measured data of settlement test. Exponential model, logarithmic model and Compertz growth model are used to analyze the prediction results of settlement of high embankment. The combined growth prediction model of Logistic-Compertz and Logistic growth forecasting model can converge to the infinite value of the growth and settlement with time, and the two models can complement each other well. Finally, the convergent trend of the Logistic growth model is used. The convergence time is determined by the combined model, and the final settlement of each monitoring point is predicted according to the formula of the combined model.
【學(xué)位授予單位】:湖北工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U416.12
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 狄二平;;高填方路基沉降變形規(guī)律研究[J];交通世界;2016年Z2期
2 肖衡林;李麗華;郭小川;馬強(qiáng);;山區(qū)高填方路堤沉降預(yù)測(cè)方法[J];應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào);2015年01期
3 賈澎濤;鄧軍;張渤;梁淑慧;;基于3G的光纖Bragg光柵地層沉降監(jiān)測(cè)系統(tǒng)[J];傳感器與微系統(tǒng);2013年09期
4 任高峰;張卅卅;胡仲春;劉永成;;面向營(yíng)業(yè)線橋涵施工的多傳感器變形監(jiān)測(cè)系統(tǒng)研究[J];安全與環(huán)境學(xué)報(bào);2013年04期
5 劉基余;;北斗衛(wèi)星導(dǎo)航系統(tǒng)的現(xiàn)況與發(fā)展[J];遙測(cè)遙控;2013年03期
6 胡仲春;趙利坤;劉永成;任高峰;;支持營(yíng)業(yè)線橋涵施工的WSN監(jiān)測(cè)系統(tǒng)[J];遼寧工程技術(shù)大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年05期
7 竇順;夏瓊;;黃土路基沉降變權(quán)重組合模型預(yù)測(cè)方法研究[J];路基工程;2012年04期
8 呂均琳;任高峰;王玉杰;趙利坤;;基于虛擬儀器技術(shù)的采空區(qū)無(wú)線監(jiān)測(cè)系統(tǒng)[J];金屬礦山;2012年07期
9 伍星華;王旭;;國(guó)內(nèi)虛擬儀器技術(shù)的應(yīng)用研究現(xiàn)狀及展望[J];現(xiàn)代科學(xué)儀器;2011年04期
10 薛祥;宋連亮;賈亮;樂(lè)園;葛虹;;高速公路軟土路基工后沉降預(yù)測(cè)的新方法[J];巖土工程學(xué)報(bào);2011年S1期
相關(guān)博士學(xué)位論文 前4條
1 范瑛;多級(jí)擋土墻土壓力傳遞效應(yīng)與沉降規(guī)律研究[D];武漢理工大學(xué);2013年
2 谷復(fù)光;吉林省某路段高填方路基沉降分析與研究[D];吉林大學(xué);2011年
3 陳濤;山區(qū)機(jī)場(chǎng)高填方地基變形及穩(wěn)定性研究[D];鄭州大學(xué);2010年
4 金生吉;高填方多級(jí)擋土墻路基沉降規(guī)律與穩(wěn)定性數(shù)值模擬研究[D];東北大學(xué);2009年
相關(guān)碩士學(xué)位論文 前8條
1 龔振宇;北斗遠(yuǎn)程通信的設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2015年
2 陳鋼;基于北斗的遠(yuǎn)程水文監(jiān)測(cè)系統(tǒng)[D];西南石油大學(xué);2013年
3 周思全;基于組合模型的沙漠地區(qū)軟土路基沉降預(yù)測(cè)研究[D];武漢理工大學(xué);2013年
4 曹詩(shī)詠;基于無(wú)線傳感器網(wǎng)絡(luò)的滑坡監(jiān)測(cè)研究[D];西南石油大學(xué);2012年
5 李建初;遂資眉高速公路軟土地基不同沉降預(yù)測(cè)方法對(duì)比研究及應(yīng)用[D];成都理工大學(xué);2012年
6 崔曉如;高填方路基沉降變形分析與預(yù)測(cè)及其控制標(biāo)準(zhǔn)研究[D];長(zhǎng)沙理工大學(xué);2010年
7 徐金華;高填方路堤多級(jí)擋土墻穩(wěn)定性研究[D];湖北工業(yè)大學(xué);2009年
8 鄧榮欽;基于GPRS的無(wú)線監(jiān)控系統(tǒng)的研究[D];武漢理工大學(xué);2007年
,本文編號(hào):1494782
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1494782.html