玄武巖纖維高粘瀝青橋面鋪裝層數(shù)值分析
本文關(guān)鍵詞:玄武巖纖維高粘瀝青橋面鋪裝層數(shù)值分析 出處:《浙江大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 玄武巖纖維 橋面鋪裝 數(shù)值分析 荷載應(yīng)力 廣義Maxwell模型
【摘要】:為進(jìn)一步推廣玄武巖纖維增強(qiáng)高粘瀝青混合料在公路領(lǐng)域的應(yīng)用,深入開展長(zhǎng)壽命瀝青橋面鋪裝層的研究,本文依托實(shí)際工程進(jìn)行了水泥混凝土先簡(jiǎn)支后連續(xù)T梁橋的瀝青鋪裝層有限元數(shù)值分析。采用整體到局部的思路,建立三維橋梁與布局梁段子模型,分析在車輛荷載作用處鋪裝層內(nèi)部的應(yīng)力應(yīng)變分布規(guī)律。探討了橋梁形式、鋪裝層材料參數(shù)以及層間粘結(jié)狀態(tài)對(duì)于鋪裝層受力狀態(tài)的影響。并在溫度場(chǎng)分析的基礎(chǔ)上,結(jié)果相關(guān)室內(nèi)試驗(yàn),得到了高溫條件下玄武巖纖維增強(qiáng)高粘瀝青鋪裝層的粘彈性力學(xué)響應(yīng)。 首先,考慮到預(yù)應(yīng)力先簡(jiǎn)支后連續(xù)T梁橋跨結(jié)構(gòu)的整體變形以及動(dòng)力特征對(duì)瀝青混凝土鋪裝層受力的影響,利用Midas/civil軟件建立橋梁結(jié)構(gòu)空間梁格模型,完成橋跨結(jié)構(gòu)的整體分析。獲得了在二期恒載、溫度荷載以考慮沖擊效用的車道荷載共同作用下,橋梁整體撓度與支座、跨中位置處梁段應(yīng)力分布規(guī)律以及相應(yīng)的最不利加載荷位。 然后,考慮水平以及豎直荷載綜合作用,運(yùn)用ABAQUS有限元軟件進(jìn)行玄武巖纖維高粘瀝青橋面鋪裝層三維模型的力學(xué)研究。利用子模型法,得出荷載作用處,瀝青鋪裝層層間連續(xù)體系沿厚度方向的橫縱向拉應(yīng)力、剪應(yīng)力以及應(yīng)變的分布規(guī)律。并進(jìn)行了鋪裝層厚度、彈性模量的參數(shù)敏感性分析。另外,考慮到使用過程中粘結(jié)層材料出現(xiàn)應(yīng)力損傷的情況,采用cohesive粘聚接觸模擬鋪裝層滑動(dòng)體系的受力狀態(tài)。 再次,利用ABAQUS建立二維T梁模型?紤]太陽(yáng)輻射能、地面輻射、空氣對(duì)流等因素,并結(jié)合工程所在地夏季的氣象資料,進(jìn)行晝夜24小時(shí)鋪裝層穩(wěn)態(tài)熱傳導(dǎo)分析。獲得鋪裝層內(nèi)部溫度隨時(shí)問的變化規(guī)律,以及鋪裝層混合料的導(dǎo)熱系數(shù)、比熱容與鋪裝層厚度對(duì)溫度場(chǎng)分布的影響。 最后,根據(jù)SMA-13玄武巖纖維高粘瀝青混合料的蠕變?cè)囼?yàn)數(shù)據(jù),擬合獲得不同溫度下廣義Maxwell模型的基本參數(shù)。建立二維有限元模型,進(jìn)行周期荷載下鋪裝層受力分析,以獲得峰值荷載下最大彎沉、蠕變變形的變化規(guī)律。
[Abstract]:In order to popularize the application of basalt fiber reinforced high viscosity asphalt mixture in highway field, the study of long-life asphalt bridge deck pavement is carried out. In this paper, the finite element numerical analysis of asphalt pavement of cement concrete first supported and then continuous T-beam bridge is carried out based on practical engineering. The distribution law of stress and strain in the pavement under vehicle load is analyzed, and the bridge form is discussed. The influence of material parameters and interlayer bonding state on the stress state of pavement is discussed. Based on the analysis of temperature field, the results are tested in laboratory. The viscoelastic response of high viscosity asphalt pavement reinforced by basalt fiber was obtained at high temperature. Firstly, considering the whole deformation of the span structure of prestressed concrete bridge and the influence of dynamic characteristics on the stress of asphalt concrete pavement. The spatial girder model of bridge structure is established by using Midas/civil software, and the whole analysis of bridge span structure is completed. The dead load is obtained in the second phase. Under the combined action of temperature load and driveway load considering the impact utility, the stress distribution law and the most unfavorable load position of the whole deflection and support of the bridge and the beam section in the middle of the span are obtained. Then, considering the comprehensive effect of horizontal and vertical loads, the ABAQUS finite element software is used to study the three-dimensional model of basalt fiber high-viscosity asphalt deck pavement, and the sub-model method is used. The distribution of transverse and longitudinal tensile stress, shear stress and strain along the thickness direction of the continuous system between layers of asphalt pavement is obtained, and the thickness of the pavement is carried out. The parameter sensitivity analysis of elastic modulus. In addition, considering the stress damage of the adhesive layer material, the stress state of the sliding system was simulated by using cohesive adhesive contact. Thirdly, the two-dimensional T-beam model is established by using ABAQUS. The solar radiation energy, surface radiation, air convection and other factors are taken into account, and the meteorological data of the site of the project in summer are taken into account. The steady-state heat conduction analysis of the pavement is carried out 24 hours a day. The variation of the internal temperature of the pavement and the thermal conductivity of the pavement mixture are obtained. The effect of specific heat capacity and pavement thickness on temperature field distribution. Finally, according to the creep test data of SMA-13 basalt fiber high viscosity asphalt mixture, the basic parameters of generalized Maxwell model at different temperatures are obtained and the two-dimensional finite element model is established. In order to obtain the law of maximum deflection and creep deformation under the peak load, the stress analysis of pavement under periodic load is carried out.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U443.33
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 季節(jié),龍佩恒,王毅娟,徐世法,馮治安,高建立;用有效活載撓度確定鋼筋混凝土橋面鋪裝層的厚度[J];北京建筑工程學(xué)院學(xué)報(bào);2001年03期
2 王磊;吳海軍;周志祥;;日照非線性溫差下橋面鋪裝層厚度對(duì)結(jié)構(gòu)受力影響分析[J];重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年05期
3 車軼,宋玉普;混凝土高拱壩孔口三維非線性分析[J];大連理工大學(xué)學(xué)報(bào);2003年02期
4 王曉,程剛,黃衛(wèi);環(huán)氧瀝青混凝土性能研究[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年06期
5 陳啟飛;李愛群;趙大亮;王浩;;預(yù)應(yīng)力混凝土斜拉橋主梁局部應(yīng)力子模型分析及試驗(yàn)[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年02期
6 趙麗華;;玄武巖礦物纖維改善SMA性能研究[J];低溫建筑技術(shù);2010年08期
7 鄭振飛,吳慶雄;多梁式斜梁橋的廣義梁格法[J];福州大學(xué)學(xué)報(bào)(自然科學(xué)版);1998年04期
8 李愛群;王浩;;子模型法在超大跨懸索橋鋼箱梁應(yīng)力分析中的應(yīng)用[J];工程力學(xué);2007年02期
9 陳強(qiáng),付修義,劉玉瓊,覃克;特立尼達(dá)湖(TLA)改性瀝青試驗(yàn)研究[J];公路;2005年09期
10 劉新權(quán);丁慶軍;姚永永;胡曙光;;高粘度改性瀝青配制鋼箱梁橋面SMA鋪裝層的研究[J];公路;2007年09期
,本文編號(hào):1436555
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1436555.html