大跨混凝土箱梁橋日照最不利溫度場(chǎng)及溫度應(yīng)力研究
本文關(guān)鍵詞:大跨混凝土箱梁橋日照最不利溫度場(chǎng)及溫度應(yīng)力研究 出處:《西南交通大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 混凝土箱梁 太陽(yáng)輻射 最不利溫度場(chǎng) 溫度應(yīng)力 有限元法
【摘要】:橋梁是長(zhǎng)期暴露在自然環(huán)境下的結(jié)構(gòu)物,在橋梁的全壽命周期內(nèi)必然會(huì)受到太陽(yáng)輻射、氣溫變化等溫度作用的影響,而溫度作用是導(dǎo)致混凝土箱梁橋產(chǎn)生裂縫的主要因素之一。目前,各國(guó)規(guī)范對(duì)混凝土箱梁橋的溫度分布模式并沒有統(tǒng)一的規(guī)定,同時(shí)由于地區(qū)氣候條件的不同溫度分布模式具有明顯的區(qū)域化特點(diǎn)。海洋環(huán)境下混凝土箱梁橋的溫度場(chǎng)分布不同于其他地區(qū),溫度裂縫對(duì)混凝土箱梁的安全性、適用性、耐久性的影響更大。因此,開展海洋環(huán)境下混凝土箱梁橋的最不利溫度場(chǎng)及溫度應(yīng)力的研究,確定符合跨海預(yù)應(yīng)力混凝土連續(xù)梁橋?qū)嶋H情況的溫差分布模式對(duì)指導(dǎo)后續(xù)類似橋梁設(shè)計(jì)具有重要意義。選擇夏季太陽(yáng)輻射強(qiáng)烈與冬季寒流入侵的典型天候在施工階段對(duì)曹妃甸區(qū)納潮河2#大橋關(guān)鍵截面分別進(jìn)行了 10天最不利正溫度場(chǎng)與3天負(fù)溫度場(chǎng)的現(xiàn)場(chǎng)實(shí)測(cè)。系統(tǒng)地分析了混凝土箱梁頂板、底板及腹板的溫度場(chǎng)及溫度應(yīng)力的分布規(guī)律,并對(duì)實(shí)測(cè)數(shù)據(jù)進(jìn)行曲線擬合,得到跨海連續(xù)箱梁橋施工階段的最不利豎向、橫向溫度梯度。結(jié)合太陽(yáng)物理學(xué)、氣象學(xué)、傳熱學(xué)的相關(guān)理論,建立了箱梁日照溫度場(chǎng)分析的邊界條件。同時(shí),考慮箱梁長(zhǎng)翼緣對(duì)腹板的陰影遮蔽作用,建立了混凝土箱梁日照最不利溫度場(chǎng)及溫度應(yīng)力仿真分析的有限元計(jì)算模型。以曹妃甸區(qū)納潮河2#大橋?yàn)楣こ趟憷?采用有限元分析軟件ANSYS對(duì)箱梁瞬態(tài)溫度場(chǎng)進(jìn)行仿真分析,得出最不利正溫度梯度發(fā)生當(dāng)天測(cè)試截面各時(shí)刻的溫度分布云圖,將各測(cè)點(diǎn)溫度時(shí)程曲線、箱梁最不利正溫度梯度的計(jì)算曲線與實(shí)測(cè)曲線進(jìn)行對(duì)比,驗(yàn)證環(huán)境與熱工參數(shù)選取合理,采用有限元軟件ANSYS對(duì)溫度場(chǎng)進(jìn)行數(shù)值模擬具有較高精度。根據(jù)熱傳導(dǎo)有限單元法原理,使用ANSYS建立平面模型進(jìn)行熱-應(yīng)力耦合分析,采用APDL編制宏文件,將瞬態(tài)熱分析得到的節(jié)點(diǎn)溫度作為載荷施加在后續(xù)應(yīng)力分析中,探討混凝土箱梁橋的溫度效應(yīng),主要分析最不利正溫度梯度作用下關(guān)鍵截面的縱、橫向溫度自應(yīng)力的分布規(guī)律。
[Abstract]:Bridge is a structure exposed to the natural environment for a long time. During the whole life cycle of the bridge, it is bound to be affected by the effect of temperature, such as solar radiation, temperature change and so on. Temperature is one of the main factors leading to cracks in concrete box girder bridges. At present, there is no uniform regulation on the temperature distribution mode of concrete box girder bridges in various countries. At the same time, the temperature distribution of concrete box girder bridges in marine environment is different from that of other regions, and the temperature cracks are safe to concrete box girder because of the obvious regionalization characteristics of different temperature distribution patterns of regional climate conditions. Applicability and durability are more important. Therefore, the most unfavorable temperature field and temperature stress of concrete box girder bridge under marine environment are studied. It is of great significance to determine the temperature distribution model of prestressed concrete continuous beam bridge in accordance with the actual situation of sea crossing prestressed concrete continuous beam bridge. The selection of typical weather conditions of strong solar radiation in summer and cold current invasion in winter is of great significance in guiding the design of similar bridges in the future. The key sections of Nachao2# Bridge in Caofeidian District were carried out respectively at the stage. The worst positive temperature field in 10 days and negative temperature field in 3 days are measured. The concrete box girder roof is systematically analyzed. The distribution law of temperature field and temperature stress of bottom plate and web plate, and the curve fitting of the measured data, the most unfavorable vertical and transverse temperature gradient in the construction stage of continuous box girder bridge across the sea is obtained, combined with solar physics. Based on the theory of meteorology and heat transfer, the boundary conditions for the analysis of the temperature field of the box girder are established, and the shading effect of the long flange of the box girder on the web is considered. The finite element calculation model of the most unfavorable temperature field and thermal stress of concrete box girder is established. The example of Naichao2# Bridge in Caofeidian District is given. The finite element analysis software ANSYS is used to simulate the transient temperature field of box girder. The temperature distribution cloud diagram of the most unfavorable positive temperature gradient is obtained at each time of the test section on the same day, and the temperature history curve of each measuring point is obtained. The calculation curve of the most unfavorable positive temperature gradient of box girder is compared with the measured curve to verify the reasonable selection of environment and thermal parameters. The finite element software ANSYS is used to simulate the temperature field with high accuracy. According to the principle of heat conduction finite element method, ANSYS is used to establish a plane model for thermal-stress coupling analysis. The macro document is compiled by APDL and the temperature of the node obtained by transient thermal analysis is applied as the load in the subsequent stress analysis to discuss the temperature effect of concrete box girder bridge. The distribution of temperature self stress in the key sections under the action of the most unfavorable positive temperature gradient is analyzed.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U441.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙人達(dá);王永寶;;日照作用下混凝土箱梁溫度場(chǎng)邊界條件研究[J];中國(guó)公路學(xué)報(bào);2016年07期
2 楊杰;毛毳;侯霞;王汪陽(yáng);;大體積混凝土溫度場(chǎng)及溫度應(yīng)力的有限元分析[J];天津城市建設(shè)學(xué)院學(xué)報(bào);2012年04期
3 顧斌;陳志堅(jiān);陳欣迪;;基于氣象參數(shù)的混凝土箱梁日照溫度場(chǎng)仿真分析[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年05期
4 王秀俊;;云對(duì)太陽(yáng)輻射的影響[J];科技風(fēng);2012年07期
5 李曉鵬;郝增新;劉強(qiáng);張興成;聶長(zhǎng)虎;楊則英;;基于Sketchup的曲線箱梁橋動(dòng)態(tài)溫度場(chǎng)邊界條件的可視化研究[J];公路與汽運(yùn);2012年01期
6 張建榮;劉照球;;混凝土對(duì)流換熱系數(shù)的風(fēng)洞實(shí)驗(yàn)研究[J];土木工程學(xué)報(bào);2006年09期
7 葉見曙,阮靜,錢培舒,賈琳;混凝土箱梁的水化熱溫度分析[J];橋梁建設(shè);2000年04期
8 張國(guó)慶,田澤民,金太學(xué),夏巖昆,程紹軒;混凝土箱梁的溫度場(chǎng)[J];東北公路;1999年03期
9 吳贛昌;;層狀路面體系溫度場(chǎng)分析[J];中國(guó)公路學(xué)報(bào);1992年04期
10 姜全德,蔣鴻;鋼筋混凝土箱形梁橋日照溫度場(chǎng)和溫度應(yīng)力平面有限元數(shù)值分析方法[J];橋梁建設(shè);1990年03期
相關(guān)博士學(xué)位論文 前2條
1 聶玉東;寒區(qū)大跨徑混凝土箱梁橋溫度場(chǎng)及溫度效應(yīng)分析[D];哈爾濱工業(yè)大學(xué);2013年
2 彭友松;混凝土橋梁結(jié)構(gòu)日照溫度效應(yīng)理論及應(yīng)用研究[D];西南交通大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 白緯宇;預(yù)應(yīng)力混凝土箱梁橋運(yùn)營(yíng)階段的溫度場(chǎng)及其效應(yīng)分析[D];內(nèi)蒙古科技大學(xué);2015年
2 葉偉;鐵路預(yù)應(yīng)力混凝土箱梁日照溫度場(chǎng)與溫度應(yīng)力研究[D];西南交通大學(xué);2014年
3 李強(qiáng);大跨徑預(yù)制混凝土箱梁溫度場(chǎng)及溫度效應(yīng)研究[D];長(zhǎng)安大學(xué);2011年
4 李小國(guó);大跨徑連續(xù)剛構(gòu)橋箱梁溫度效應(yīng)研究[D];中南林業(yè)科技大學(xué);2011年
5 陳天地;鐵路空心橋墩溫度場(chǎng)試驗(yàn)研究[D];重慶大學(xué);2007年
6 楊繼;斜拉橋箱梁溫度場(chǎng)及溫度效應(yīng)的研究[D];長(zhǎng)沙理工大學(xué);2007年
7 李前名;預(yù)應(yīng)力混凝土箱梁橋溫度場(chǎng)及溫度應(yīng)力的分析與研究[D];西南交通大學(xué);2006年
8 田楊;大跨長(zhǎng)聯(lián)預(yù)應(yīng)力混凝土連續(xù)梁橋的施工控制研究[D];西南交通大學(xué);2006年
9 李全林;日照下混凝土箱梁溫度場(chǎng)和溫度應(yīng)力研究[D];湖南大學(xué);2004年
10 柯尊禮;大跨度PC連續(xù)箱梁橋的溫度場(chǎng)及其效應(yīng)分析[D];武漢理工大學(xué);2004年
,本文編號(hào):1392234
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1392234.html