船體平面分段建造裝配序列規(guī)劃與裝配線平衡方法研究
本文選題:裝配序列規(guī)劃(ASP) 切入點(diǎn):裝配線平衡(ALB) 出處:《上海交通大學(xué)》2014年博士論文 論文類型:學(xué)位論文
【摘要】:船舶制造中的裝配工作一般耗時(shí)最久、需要的關(guān)鍵資源最多。其中,分段裝配工時(shí)大概占船體裝配總工時(shí)的45%左右,分段裝配成本在船體裝配總成本中所占的比例更是高達(dá)50%以上。因此,研究船體分段裝配過程中的最優(yōu)化問題,對(duì)縮短船體建造周期、減少裝配成本以及提高裝配質(zhì)量具有重大意義。 本文以船體平面分段裝配為對(duì)象,研究了分段裝配序列規(guī)劃與裝配線平衡方法,為解決復(fù)雜產(chǎn)品的裝配最優(yōu)化問題提供決策依據(jù)。研究工作主要包括以下內(nèi)容: (1)基于實(shí)例推理(CBR)與基于幾何約束推理相結(jié)合的平面分段裝配序列規(guī)劃方法。船體分段結(jié)構(gòu)復(fù)雜,所包含的零部件眾多,給可行裝配序列推理造成很大的困難。另外,在結(jié)構(gòu)組成上,組成分段的零部件之間沒有嚴(yán)格的幾何約束關(guān)系,滿足幾何約束的可行序列數(shù)量較大,不利于序列的評(píng)價(jià)及優(yōu)選。本文利用基于實(shí)例推理的方法,參照與裝配問題最相似實(shí)例的裝配順序,生成裝配問題的初始優(yōu)先約束關(guān)系,然后結(jié)合基于約束的推理,生成裝配體完整的裝配序列,并利用遺傳算法進(jìn)行裝配序列選優(yōu)。論文用具體加工算例驗(yàn)證了該方法的有效性。 (2)批量型裝配線平衡問題建模及求解方法研究。在分段部件裝配過程中,各部件不僅要滿足加工時(shí)間、平臺(tái)占用面積等的約束,還需符合一定的完工優(yōu)先關(guān)系。以裝配線勞動(dòng)生產(chǎn)率最大化及工作站負(fù)荷均衡為優(yōu)化目標(biāo),在合理假設(shè)的基礎(chǔ)上,,建立批量型裝配線平衡問題的數(shù)學(xué)模型。本文利用文化基因算法對(duì)問題進(jìn)行求解,尋找最優(yōu)的分段部件裝配計(jì)劃。通過染色體的解碼過程實(shí)現(xiàn)任務(wù)的智能分批,設(shè)計(jì)了序列自動(dòng)調(diào)整算子,保證生成的最優(yōu)解符合優(yōu)先關(guān)系約束。另外,在算法框架中加入局部搜索算子,加快了算法的求解過程。最后通過分段部件裝配的實(shí)際算例驗(yàn)證算法的有效性。該問題的解決,對(duì)于具有優(yōu)先關(guān)系約束的任務(wù)割分或排序問題的求解具有參考價(jià)值。 (3)混合型裝配線平衡問題建模及求解方法研究。船體平面分段裝配流水線平衡的目的是尋找最優(yōu)的加工任務(wù)排序,實(shí)現(xiàn)總?cè)蝿?wù)的生產(chǎn)周期最短、任務(wù)拖期數(shù)量最少以及工作站負(fù)荷均衡等目標(biāo)。為了獲取該多目標(biāo)優(yōu)化問題的Pareto最優(yōu)解,本文在合理假設(shè)的基礎(chǔ)上,構(gòu)建了混合型裝配線平衡問題的數(shù)學(xué)模型。提出了一種改進(jìn)的多目標(biāo)遺傳算法,設(shè)計(jì)了個(gè)體適應(yīng)值的分配策略及Pareto解集更新機(jī)制,使得算法能夠快速地獲取滿足優(yōu)化目標(biāo)的多組非劣解。最后通過船體平面分段裝配實(shí)例驗(yàn)證了算法的有效性;旌涎b配線平衡問題的解決,可以為多目標(biāo)組合優(yōu)化問題非劣解的求取提供一定的參照。 (4)產(chǎn)品裝配序列規(guī)劃及裝配線平衡系統(tǒng)集成方法研究。研究了序列規(guī)劃及裝配線平衡的關(guān)系,構(gòu)建了船體平面分段裝配最優(yōu)化應(yīng)用系統(tǒng),并以國(guó)內(nèi)某造船廠平面分段裝配的實(shí)際加工數(shù)據(jù)對(duì)系統(tǒng)進(jìn)行了驗(yàn)證。 綜上,本文給出了一整套船體平面分段裝配過程最優(yōu)化的解決方法,對(duì)企業(yè)縮短分段裝配工時(shí)、節(jié)約生產(chǎn)成本提供了決策支持。
[Abstract]:The general assembly work of Shipbuilding's longest and most critical resource needs. Among them, sub assembly time probably accounted for about 45% of the total hull assembly, sub assembly cost in hull assembly in the total cost of the proportion is up to more than 50%. Therefore, optimization research on hull assembly process. To shorten the construction cycle of the hull, reduce assembly cost and is of great significance to improve the quality of assembly.
In this paper, segmented assembly sequence planning and assembly line balancing method are studied based on segmented assembly of hull plane, which provides decision basis for solving assembly optimization problems of complex products.
(1) based on case-based reasoning (CBR) plane combined with geometric constraints based on piecewise assembly sequence planning method. Hull structure is complex, contains many components, causing great difficulties for feasible assembly sequence reasoning. In addition, in structure, no strict geometric constraint relationship between the composition of some parts meet, the geometric constraint of feasible sequence number is large, is not conducive to the sequence evaluation and optimization. This paper uses the method of case based reasoning, assembly sequence and assembly problems referring to the similar case, the initial generation of assembly precedence relationship problems, and then combined with constraint based reasoning, generating assembly assembly sequence integrity, and assembly sequence optimization by genetic algorithm. The specific processing examples verify the effectiveness of the method.
(2) batch type assembly line balancing problem modeling and solving methods in the study. The segmentation of each component in the assembly process, not only to meet the processing time, the platform occupied area and other constraints, also need to meet certain priority to the assembly line. The completion of labor productivity maximization and work station load balancing as the optimization goal, based on reasonable assumptions, establish mathematical model of batch type assembly line balancing problem. This paper uses the memetic algorithm to solve the problem, finding the optimal segment assembly plan. The task of intelligent batch through the decoding process of chromosomes, designed to automatically adjust the sequence of operators, ensure that the generated optimal solution with precedence constraints. In addition, join a local search operator in the algorithm frame, to speed up the algorithm. Finally, through the actual effectiveness of the segmentation assembly example verification algorithm. The problem The solution is of reference value for solving the problem of task cutting or sorting with priority relation constraints.
(3) research on Modeling and solving method of mixed model assembly line balancing problem. Hull plane block assembly line balance is objective to find the optimal sorting processing tasks, achieve total task production cycle short, the minimum number of tardy tasks and workstation load balancing goals. To obtain the Pareto optimal solutions of multi-objective optimization problem in this paper, on the basis of rational hypothesis, constructs a mathematical model for mixed model assembly line balancing problem. This paper proposed an improved multi-objective genetic algorithm, the design of individual adaptation strategies and Pareto value of solution set update mechanism, the algorithm can quickly obtain a satisfying non inferior solution. Finally, the optimization goal the plane through the hull block assembly examples verify the effectiveness of the algorithm. To solve the mixed model assembly line balancing problem, for multi-objective optimization non dominated solutions for providing certain Reference.
(4) research on system integration method of product assembly sequence planning and assembly line balance. To study the relationship between sequence planning and assembly line balancing, planar hull block assembly optimization application system is constructed, the verification of the system data and the actual processing by a domestic shipyard plane block assembly.
In conclusion, this paper gives a complete solution to the optimization of hull plane sectional assembly process, which provides decision support for shortening segmental assembly time and saving production cost.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:U671
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鐘宇光,邱長(zhǎng)華,薛開;船體分段裝配CAPP關(guān)鍵技術(shù)研究[J];船舶工程;2005年04期
2 于宏;王成恩;于嘉鵬;袁輝;;基于粒子群算法的復(fù)雜產(chǎn)品裝配序列規(guī)劃[J];東北大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年02期
3 歐陽(yáng)北京,李維嘉;船體平面分段自動(dòng)裝配生產(chǎn)線研究[J];廣船科技;2001年03期
4 宋華明,韓玉啟;基于遺傳算法的裝配線平衡[J];系統(tǒng)工程;2002年01期
5 劉翔,姜雙斌;基于PG圖的空間信息服務(wù)鏈建模方法[J];后勤工程學(xué)院學(xué)報(bào);2005年02期
6 曹振新,朱云龍;多目標(biāo)遺傳算法在混流裝配線排序中的應(yīng)用[J];計(jì)算機(jī)工程;2005年22期
7 董天陽(yáng);童若鋒;張玲;董金祥;;基于知識(shí)的智能裝配規(guī)劃系統(tǒng)[J];計(jì)算機(jī)集成制造系統(tǒng);2005年12期
8 顧廷權(quán),高國(guó)安,徐向陽(yáng);裝配工藝規(guī)劃中裝配序列生成與評(píng)價(jià)方法研究[J];計(jì)算機(jī)集成制造系統(tǒng)-CIMS;1998年01期
9 謝濤,陳火旺,康立山;多目標(biāo)優(yōu)化的演化算法[J];計(jì)算機(jī)學(xué)報(bào);2003年08期
10 皮興忠,范秀敏,嚴(yán)雋琪;用基于作業(yè)序列的遺傳算法求解裝配線平衡問題[J];機(jī)械科學(xué)與技術(shù);2003年01期
本文編號(hào):1602205
本文鏈接:http://sikaile.net/kejilunwen/chuanbolw/1602205.html