多變量工序能力指數評價模型研究與應用
【文章頁數】:81 頁
【學位級別】:碩士
【部分圖文】:
圖2-1工藝參數分布中心μ與規(guī)范中心0T偏離1.5σ
工序能力指數PkC序能力指數的定義的元器件生產中,工藝參數分布中心μ與工藝規(guī)范中心0T,因為在整個工藝流程中不可能全部采用閉環(huán)工藝控制,制,因此在加工工藝參數時,不可能精確控制元器件某一藝參數規(guī)范中心值處時結束該道生產工序,實際上都是先結果調整工藝條件。即使是在閉環(huán)工藝控制條件....
圖2.3兩道工序數據概率分布圖(pkC=0.50)
pkC=0.50)分析圖2.3中兩道工序對應不同的成品率的原因,主要是因為pC表征的是工序的潛在能力,規(guī)范區(qū)間的中間值必須和樣本均值重合,而實際工序能力指數沒有這樣的要求。因此當樣本均值和規(guī)范區(qū)間中間值不重合,并且標準偏差也不一樣時,可以得出相同的工序能力指數,但是成品率卻不....
圖2.4不同偏離情況下工藝不合格品率PPM值與工序能力指數的關系
可以得出相同的工序能力指數,但是成品率卻不相同。對正態(tài)分布的工藝參數,在工藝參數規(guī)范中心與工藝參數分布中心重合以及不同偏離情況下,工藝不合格品率與工序能力指數的關系如圖2.4所示:圖2.4不同偏離情況下工藝不合格品率PPM值與工序能力指數的關系pC只是反映了工藝規(guī)范控制限與工....
圖2.5二維情形下工藝規(guī)范和99.73%工藝分布區(qū)域式(2-14)的具體表達式由Jessenberger.C.Weihs[40]
由數理統(tǒng)計理論知,當工藝數據服從多維正態(tài)分布時2R是橢圓(或橢球)區(qū)域。下圖2.5以二維情況為例,說明了工藝規(guī)范和工藝分布區(qū)域。圖2.5二維情形下工藝規(guī)范和99.73%工藝分布區(qū)域式(2-14)的具體表達式由Jessenberger.C.Weihs[40]提出,稱之為....
本文編號:4014954
本文鏈接:http://sikaile.net/jixiegongchenglunwen/4014954.html