沖擊漸進(jìn)振動(dòng)系統(tǒng)相鄰基本振動(dòng)的轉(zhuǎn)遷規(guī)律
發(fā)布時(shí)間:2019-05-08 22:36
【摘要】:沖擊振動(dòng)現(xiàn)象廣泛存在于動(dòng)力機(jī)械系統(tǒng)中,使得系統(tǒng)表現(xiàn)出復(fù)雜的動(dòng)力學(xué)響應(yīng).目前對(duì)沖擊振動(dòng)系統(tǒng)的p/1類基本振動(dòng)的穩(wěn)定性及分岔研究報(bào)道較少,而且已有的對(duì)沖擊振動(dòng)系統(tǒng)動(dòng)力學(xué)的研究基本都是基于單參數(shù)分岔進(jìn)行分析的.研究以小型振動(dòng)沖擊式打樁機(jī)為工程背景,建立了沖擊漸進(jìn)振動(dòng)系統(tǒng)的力學(xué)模型.分析了激振器和緩沖墊發(fā)生碰撞的類型,以及滑塊漸進(jìn)運(yùn)動(dòng)的條件.給出了系統(tǒng)可能呈現(xiàn)的四種運(yùn)動(dòng)狀態(tài)的判斷條件和運(yùn)動(dòng)微分方程.通過(guò)二維參數(shù)分岔分析得到系統(tǒng)在(ω,l)參數(shù)平面內(nèi)存在的各類周期振動(dòng)的參數(shù)域和分布規(guī)律.詳細(xì)分析了相鄰p/1類基本振動(dòng)的轉(zhuǎn)遷規(guī)律.在5/1基本振動(dòng)的參數(shù)域的右邊區(qū)域,相鄰p/1基本振動(dòng)的參數(shù)域臨界線上存在一個(gè)奇異點(diǎn)X_p,相鄰p/1類基本振動(dòng)的分岔特點(diǎn)以奇異點(diǎn)X_p為臨界點(diǎn).在l小于l_X_p的區(qū)域內(nèi),相鄰p/1基本振動(dòng)經(jīng)實(shí)擦邊分岔和鞍結(jié)分岔相互轉(zhuǎn)遷,實(shí)擦邊分岔線和鞍結(jié)分岔線之間存在遲滯域,遲滯域內(nèi),系統(tǒng)存在兩個(gè)周期吸引子共存的現(xiàn)象.在l大于l_X_p的區(qū)域內(nèi),相鄰p/l類基本振動(dòng)的參數(shù)域之間存在一個(gè)中間過(guò)渡區(qū)域.中間過(guò)渡區(qū)域內(nèi),系統(tǒng)呈現(xiàn)(2p+2)/2和(2p+1)/2周期振動(dòng)等.在5/1基本振動(dòng)的參數(shù)域的左邊區(qū)域,p/1基本振動(dòng)經(jīng)多重滑移分岔產(chǎn)生(P+1)/1基本振動(dòng).
[Abstract]:Shock vibration phenomenon widely exists in the dynamic mechanical system, which makes the system show complex dynamic response. At present, there are few studies on the stability and bifurcation of the basic vibration of the shock vibration system, and the existing studies on the dynamics of the impact vibration system are based on the analysis of the single-parameter bifurcation. Based on the engineering background of small-scale vibratory impact pile driver, the mechanical model of impact progressive vibration system is established. The type of collision between the shock exciter and the cushion and the condition of the progressive movement of the slider are analyzed. The judgment conditions and differential equations of motion for the four possible motion states of the system are given. By means of two-dimensional parameter bifurcation analysis, the parameter domains and distribution rules of periodic vibration of the system in the (蠅 -, l) parametric plane are obtained. In this paper, the transfer law of the basic vibration of the adjacent p _ (1) class is analyzed in detail. In the right region of the parameter field of 5 ~ 1 basic vibration, there is a singular point X _ (?) p on the boundary of the parameter domain of adjacent p ~ (1) fundamental vibration, and the bifurcation characteristic of the adjacent p ~ (1) basic vibration is based on the singular point X _ (?) _ p. In the region where l is less than l_X_p, the basic vibration of the adjacent p is shifted by the real friction bifurcation and the saddle node bifurcation, and there is a delay region between the real friction edge bifurcation line and the saddle node bifurcation line, and in the delay domain, there is a delay region between the real friction edge bifurcation line and the saddle node bifurcation line. Two periodic attractors coexist in the system. In the region where l is greater than l_X_p, there is an intermediate transition region between the parameter domains of the adjacent p-class fundamental vibrations. In the intermediate transition region, the system presents (2p 2) / 2 and (2 p 1) / 2 periodic vibrations. In the left region of the parameter range of the 5 ~ 1 basic vibration, the p ~ (1) fundamental vibration is generated by multiple slip bifurcation (P _ (1) / 1 (P _ (1).
【作者單位】: 蘭州交通大學(xué)機(jī)電工程學(xué)院;甘肅省軌道交通裝備系統(tǒng)動(dòng)力學(xué)與可靠性重點(diǎn)實(shí)驗(yàn)室;
【基金】:國(guó)家自然科學(xué)基金(11362008,11462012) 蘭州市人才創(chuàng)新創(chuàng)業(yè)計(jì)劃(2014-RC-33)資助項(xiàng)目
【分類號(hào)】:TH113.1
,
本文編號(hào):2472273
[Abstract]:Shock vibration phenomenon widely exists in the dynamic mechanical system, which makes the system show complex dynamic response. At present, there are few studies on the stability and bifurcation of the basic vibration of the shock vibration system, and the existing studies on the dynamics of the impact vibration system are based on the analysis of the single-parameter bifurcation. Based on the engineering background of small-scale vibratory impact pile driver, the mechanical model of impact progressive vibration system is established. The type of collision between the shock exciter and the cushion and the condition of the progressive movement of the slider are analyzed. The judgment conditions and differential equations of motion for the four possible motion states of the system are given. By means of two-dimensional parameter bifurcation analysis, the parameter domains and distribution rules of periodic vibration of the system in the (蠅 -, l) parametric plane are obtained. In this paper, the transfer law of the basic vibration of the adjacent p _ (1) class is analyzed in detail. In the right region of the parameter field of 5 ~ 1 basic vibration, there is a singular point X _ (?) p on the boundary of the parameter domain of adjacent p ~ (1) fundamental vibration, and the bifurcation characteristic of the adjacent p ~ (1) basic vibration is based on the singular point X _ (?) _ p. In the region where l is less than l_X_p, the basic vibration of the adjacent p is shifted by the real friction bifurcation and the saddle node bifurcation, and there is a delay region between the real friction edge bifurcation line and the saddle node bifurcation line, and in the delay domain, there is a delay region between the real friction edge bifurcation line and the saddle node bifurcation line. Two periodic attractors coexist in the system. In the region where l is greater than l_X_p, there is an intermediate transition region between the parameter domains of the adjacent p-class fundamental vibrations. In the intermediate transition region, the system presents (2p 2) / 2 and (2 p 1) / 2 periodic vibrations. In the left region of the parameter range of the 5 ~ 1 basic vibration, the p ~ (1) fundamental vibration is generated by multiple slip bifurcation (P _ (1) / 1 (P _ (1).
【作者單位】: 蘭州交通大學(xué)機(jī)電工程學(xué)院;甘肅省軌道交通裝備系統(tǒng)動(dòng)力學(xué)與可靠性重點(diǎn)實(shí)驗(yàn)室;
【基金】:國(guó)家自然科學(xué)基金(11362008,11462012) 蘭州市人才創(chuàng)新創(chuàng)業(yè)計(jì)劃(2014-RC-33)資助項(xiàng)目
【分類號(hào)】:TH113.1
,
本文編號(hào):2472273
本文鏈接:http://sikaile.net/jixiegongchenglunwen/2472273.html
最近更新
教材專著