基于信息融合與VPMCD的滾動(dòng)軸承智能診斷研究
[Abstract]:As a key supporting part in mechanical system, rolling bearing has a direct impact on the safe operation of the whole equipment. Therefore, the development of rolling bearing fault diagnosis is of practical significance. In order to ensure the completeness and reliability of the state information collection, multiple sensors are usually arranged on the measuring points in order to ensure the completeness and reliability of the rolling bearing operation state monitoring. Most of the collected multi-channel signals are nonlinear and non-stationary. However, the traditional time-frequency method is difficult to realize the simultaneous joint analysis of multi-channel signals, and multi-dimensional empirical mode decomposition can effectively solve this problem and ensure that the IMF components of the decomposed multi-channel signals are aligned according to the frequency scale. This provides favorable conditions for multi-channel information fusion. In this paper, it is combined with multivariate multi-scale entropy and full-vector spectrum technology to extract fault feature of rolling bearing, and the feature extracted based on information fusion technology is identified by variable prediction model recognition method (VPMCD). The main work of this paper is as follows: 1. A method of extracting degenerate features based on multi-dimensional empirical mode decomposition (MEMD) and multivariate multi-scale entropy (MMSE) is proposed. Firstly, the multi-channel signals in different degraded states of rolling bearings are decomposed synchronously and adaptively using MEMD algorithm, and then the multi-element and multi-scale entropy analysis of the signals reconstructed by multi-scale IMF components is carried out. Finally, through the analysis of examples, it is proved that the method can effectively reflect the degradation trend of rolling bearing. 2. A new fault diagnosis method of rolling bearing based on noise assisted multidimensional empirical mode decomposition (NA-MEMD) and full vector spectrum is proposed, which is called full-vector NA-MEMD.. Firstly, NA-MEMD is used to decompose the multi-channel information composed of the homologous two-channel signal and the noise auxiliary signal into a series of IMF components, and then, according to the correlation coefficient, the IMF component containing the main fault information is selected from the homologous dual-channel to reconstruct. Finally, the reconstructed signal is fused with the full vector information to extract the fault features. Simulation signals and experimental signals are used to verify the effectiveness of the method. 3. The features extracted by the two fault feature extraction methods based on information fusion are classified by variable prediction model (VPMCD). Firstly, the multi-scale entropy extracted from MEMD and MMSE is used as the eigenvalue to construct the feature vector, and the bearing degradation degree is recognized by input VPMCD. Then the amplitudes of all kinds of fault feature frequencies in the full-vector NA-MEMD envelope spectrum are extracted as the eigenvalues to construct the eigenvector, and the feature vectors are input into the VPMCD classifier to realize the classification of fault types. Finally, the qualitative and quantitative intelligent diagnosis of rolling bearing is realized by two methods.
【學(xué)位授予單位】:鄭州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TH133.33
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;首屆全國(guó)信息融合學(xué)術(shù)年會(huì)征文通知[J];艦船電子工程;2009年09期
2 ;首屆全國(guó)信息融合學(xué)術(shù)年會(huì)召開(kāi)[J];航空學(xué)報(bào);2009年12期
3 ;首屆全國(guó)信息融合學(xué)術(shù)年會(huì)征文通知[J];海軍航空工程學(xué)院學(xué)報(bào);2009年04期
4 ;第二屆全國(guó)信息融合學(xué)術(shù)年會(huì)征文通知[J];艦船電子工程;2010年01期
5 ;首屆全國(guó)信息融合學(xué)術(shù)年會(huì)[J];艦船電子工程;2010年01期
6 ;第三屆中國(guó)信息融合大會(huì)征文通知[J];航空學(xué)報(bào);2011年01期
7 ;第四屆中國(guó)信息融合大會(huì)征文通知[J];艦船電子工程;2011年08期
8 ;第4屆中國(guó)信息融合大會(huì)征文通知[J];航空學(xué)報(bào);2011年12期
9 ;第四屆中國(guó)信息融合大會(huì)征文通知[J];艦船電子工程;2011年12期
10 ;第四屆中國(guó)信息融合大會(huì)征文通知[J];艦船電子工程;2012年02期
相關(guān)博士學(xué)位論文 前7條
1 胡洲;信息融合欠驅(qū)動(dòng)控制技術(shù)研究[D];南京航空航天大學(xué);2014年
2 張?jiān)畦?基于用戶信息融合的個(gè)性化推薦[D];武漢大學(xué);2012年
3 王恩雁;基于本體的多源異構(gòu)應(yīng)急信息融合方法研究[D];哈爾濱工業(yè)大學(xué);2014年
4 文妍;基于多源信息融合的數(shù)控機(jī)床進(jìn)給系統(tǒng)機(jī)械故障診斷研究[D];青島理工大學(xué);2016年
5 吳榮春;軍事信息系統(tǒng)中信息融合關(guān)鍵技術(shù)研究[D];電子科技大學(xué);2016年
6 王健;產(chǎn)品追蹤過(guò)程中失效UID恢復(fù)與補(bǔ)救技術(shù)研究[D];西北工業(yè)大學(xué);2016年
7 朱林;信息融合系統(tǒng)工程設(shè)計(jì)準(zhǔn)則的研究[D];哈爾濱工程大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 金兵;基于信息融合與VPMCD的滾動(dòng)軸承智能診斷研究[D];鄭州大學(xué);2017年
2 馬艷麗;基于全矢MEMD的滾動(dòng)軸承狀態(tài)退化研究[D];鄭州大學(xué);2017年
3 莊穎;信息融合的粗糙集方法研究[D];昆明理工大學(xué);2015年
4 李曉;基于信息融合的高速列車轉(zhuǎn)向架故障診斷[D];西南交通大學(xué);2015年
5 陳昭;基于云計(jì)算的中藥信息融合知識(shí)服務(wù)平臺(tái)構(gòu)建[D];福建中醫(yī)藥大學(xué);2015年
6 陳亭亭;雷達(dá)與AIS信息融合技術(shù)的研究[D];大連海事大學(xué);2015年
7 萬(wàn)守鵬;基于信息融合的艙音信號(hào)分析與安全診斷[D];上海應(yīng)用技術(shù)學(xué)院;2015年
8 張寧波;基于信息融合的電子產(chǎn)品故障診斷[D];中北大學(xué);2015年
9 劉萌萌;基于信息融合的改進(jìn)極限學(xué)習(xí)機(jī)預(yù)測(cè)算法研究[D];遼寧大學(xué);2015年
10 田靜;基于聲波特征的管道泄漏信息融合故障診斷方法研究[D];河北科技大學(xué);2015年
,本文編號(hào):2275192
本文鏈接:http://sikaile.net/jixiegongchenglunwen/2275192.html