天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 機(jī)電工程論文 >

硅基MEMS器件的液體潤(rùn)滑及納米磁性液體磁控潤(rùn)滑研究

發(fā)布時(shí)間:2018-03-10 05:21

  本文選題:MEMS器件 切入點(diǎn):微觀摩擦磨損實(shí)驗(yàn)裝置 出處:《中國(guó)礦業(yè)大學(xué)》2015年博士論文 論文類型:學(xué)位論文


【摘要】:微機(jī)電系統(tǒng)(MEMS)器件的工作間隙尺度常處于納米級(jí),受尺寸效應(yīng)的影響,作用在表面上的摩擦力和粘著力等相對(duì)于體積力而言要大很多,同時(shí)由于其運(yùn)轉(zhuǎn)速度高,因此相對(duì)于傳統(tǒng)機(jī)械而言,摩擦問題顯得更加突出。由于擔(dān)心液體潤(rùn)滑劑本身的粘滯力會(huì)給MEMS器件的運(yùn)行帶來額外的阻力,目前對(duì)微機(jī)械表面的潤(rùn)滑主要采用薄膜潤(rùn)滑技術(shù)。為了研究液體潤(rùn)滑劑對(duì)硅基MEMS器件表面的潤(rùn)滑性能,本文設(shè)計(jì)了一種新型的微觀摩擦磨損試驗(yàn)裝置,并對(duì)硅基MEMS器件的液體潤(rùn)滑和納米磁性液體磁控潤(rùn)滑進(jìn)行了研究。為了實(shí)驗(yàn)研究硅基MEMS器件表面的微觀摩擦特性,設(shè)計(jì)了一種基于銷盤式摩擦副的微摩擦磨損試驗(yàn)測(cè)試裝置,詳細(xì)介紹了該裝置的組成、工作原理及關(guān)鍵部件的設(shè)計(jì)。其中,利用MEMS平面彈簧實(shí)現(xiàn)微牛量級(jí)載荷的施加和測(cè)量,利用MEMS旋轉(zhuǎn)彈性元件實(shí)現(xiàn)微牛米量級(jí)摩擦扭矩的測(cè)量,通過設(shè)計(jì)摩擦試件自適應(yīng)結(jié)構(gòu)使摩擦副的表面始終良好接觸,借助潤(rùn)滑油池和潤(rùn)滑液自動(dòng)補(bǔ)充裝置保證摩擦副的良好供液,采用Lab VIEW上位機(jī)軟件實(shí)現(xiàn)了測(cè)試數(shù)據(jù)的采集及處理。實(shí)驗(yàn)標(biāo)定結(jié)果表明,該微觀摩擦磨損試驗(yàn)臺(tái)動(dòng)態(tài)性能良好,載荷分辨率為0.08m N,摩擦力分辨率為0.024m N,能夠滿足MEMS器件微摩擦磨損的實(shí)驗(yàn)測(cè)試要求。根據(jù)摩檫學(xué)理論中Stribeck曲線三種潤(rùn)滑階段的變化規(guī)律,確定了試驗(yàn)參數(shù),利用上述微觀摩擦磨損試驗(yàn)裝置測(cè)試了液體潤(rùn)滑劑對(duì)硅基MEMS器件微觀表面的潤(rùn)滑性能。實(shí)驗(yàn)研究了不同載荷條件,去離子水、十六烷、硅油和角鯊?fù)榈炔煌扯纫后w對(duì)硅基MEMS微觀表面潤(rùn)滑性能的影響,通過測(cè)量不同相對(duì)滑動(dòng)速度條件下的摩擦系數(shù)和兩摩擦副表面間的油膜厚度,討論了硅基MEMS器件表面的摩擦機(jī)理以及液體潤(rùn)滑特性。同時(shí),基于表面織構(gòu)技術(shù)在摩擦試件表面加工出不同表面紋理,結(jié)合實(shí)驗(yàn)測(cè)試和模擬仿真分析,討論了表面紋理對(duì)MEMS器件微觀表面液體潤(rùn)滑的影響。利用SEM表征了MEMS器件表面在混合摩擦階段的微觀磨損形貌,分析了液體潤(rùn)滑對(duì)MEMS器件的減摩特性。在理論分析納米磁性液體粘磁特性的基礎(chǔ)上,測(cè)試了外加磁場(chǎng)作用下納米磁性液體的粘度變化規(guī)律。通過在微觀摩擦磨損試驗(yàn)臺(tái)上改造加裝磁場(chǎng)裝置,測(cè)試了不同磁場(chǎng)條件下納米磁性液體對(duì)MEMS微觀表面的潤(rùn)滑性能,利用SEM和XPS等表征手段分析了納米磁性液體作為潤(rùn)滑劑時(shí)的潤(rùn)滑機(jī)理,探討了納米磁性液體對(duì)MEMS器件表面的磁控潤(rùn)滑性能。該論文有圖120幅,表6個(gè),參考文獻(xiàn)175篇。
[Abstract]:The size of the working gap of MEMS / MEMS devices is usually at the nanometer level. Due to the effect of size effect, the friction and adhesion force acting on the surface is much larger than the volume force, and at the same time, because of its high speed, Therefore, the friction problem is more prominent than the traditional machinery, because of the worry that the viscous force of the liquid lubricant itself will bring extra resistance to the operation of the MEMS device. In order to study the lubricating performance of liquid lubricant on the surface of silicon based MEMS device, a new micro friction and wear test device is designed in this paper. The liquid lubrication of silicon based MEMS device and the magnetically controlled lubrication of nanometer magnetic liquid are studied. In order to study the micro friction characteristics of silicon based MEMS device, a micro friction and wear test device based on pin disk friction pair is designed. The composition, working principle and design of key components of the device are introduced in detail, in which the MEMS plane spring is used to implement the application and measurement of the micro cattle load, and the MEMS rotation elastic element is used to measure the friction torque of the micro cattle meter. By designing the adaptive structure of friction specimen, the surface of friction pair is always in good contact, and the good liquid supply of friction pair is ensured by means of lubricating oil pool and lubricating fluid automatic replenishing device. Lab VIEW software is used to collect and process the test data. The calibration results show that the dynamic performance of the micro friction and wear test rig is good. The load resolution is 0.08mN and the friction resolution is 0.024mN. it can meet the test requirements of micro-friction and wear of MEMS devices. According to the three lubricating stages of Stribeck curves in the theory of friction and sassafras, the test parameters are determined. The lubricating properties of liquid lubricant on the microcosmic surface of silicon-based MEMS devices were tested by using the micro friction and wear test apparatus mentioned above, and the effects of different loading conditions, such as deionized water, hexadecane, hexadecane, were studied. The effects of different viscosity liquids, such as silicone oil and squalane, on the lubricating properties of silicon-based MEMS microcosmic surfaces were studied. The friction coefficient and the oil film thickness between the surfaces of the two pairs were measured under different relative sliding velocities. The surface friction mechanism and liquid lubrication characteristics of silicon based MEMS devices are discussed. At the same time, different surface textures are fabricated on the surface of friction specimens based on surface texture technology, combined with experimental testing and simulation analysis. The effect of surface texture on the microcosmic surface liquid lubrication of MEMS devices was discussed. SEM was used to characterize the micro-wear morphology of MEMS devices during the mixed friction phase. The antifriction characteristics of liquid lubrication to MEMS devices are analyzed. Based on the theoretical analysis of the viscomagnetic properties of nanomagnetic liquids, The viscosity variation of nano-magnetic liquid under the action of external magnetic field was tested. The lubricating properties of nano-magnetic fluid on MEMS microcosmic surface under different magnetic fields were tested by retrofitting the magnetic field device on the micro-friction and wear test rig. The lubrication mechanism of nanometer magnetic liquid as lubricant was analyzed by means of SEM and XPS, and the magnetically controlled lubrication performance of nanometer magnetic liquid on the surface of MEMS device was discussed. There are 120 charts, 6 tables and 175 references in this paper.
【學(xué)位授予單位】:中國(guó)礦業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TH117.2
,

本文編號(hào):1591947

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jixiegongchenglunwen/1591947.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b80ff***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com