基于DT-CWT自適應(yīng)Teager能量譜的軸承早期故障診斷
發(fā)布時間:2018-01-31 04:46
本文關(guān)鍵詞: 滾動軸承 雙樹復(fù)小波 頻帶幅值熵 Teager能量譜 自適應(yīng)共振帶提取 故障診斷 出處:《振動.測試與診斷》2017年04期 論文類型:期刊論文
【摘要】:針對滾動軸承早期故障特征信息難以識別以及帶通濾波器參數(shù)設(shè)置依賴使用者經(jīng)驗等造成共振帶不能有效確定并自適應(yīng)提取的問題,提出了頻帶幅值熵的概念。在此基礎(chǔ)上,將雙樹復(fù)小波變換和Teager能量譜結(jié)合,提出了基于雙樹復(fù)小波自適應(yīng)Teager能量譜的早期故障診斷方法。首先,利用雙樹復(fù)小波將采集到的振動信號分解為不同頻帶的子信號,并計算各子帶的頻帶幅值熵;然后,將熵值按升序排列后依次作為閾值,提取頻帶幅值熵大于閾值的子帶,依據(jù)峭度指標(biāo)確定最佳閾值,從而自適應(yīng)并且有效地提取出共振帶;最后,對共振帶進(jìn)行Teager能量譜分析,即可從中準(zhǔn)確地識別出軸承的故障特征頻率。通過信號仿真與實驗數(shù)據(jù)分析驗證了該方法的有效性。
[Abstract]:Due to the difficulty of identifying the early fault feature information of rolling bearing and the dependence of user experience on the parameter setting of band-pass filter, the resonance band can not be effectively determined and self-adaptively extracted. The concept of frequency band amplitude entropy is put forward, and on this basis, the dual tree complex wavelet transform and Teager energy spectrum are combined. An early fault diagnosis method based on bitree complex wavelet adaptive Teager energy spectrum is proposed. Firstly, the collected vibration signal is decomposed into sub-signals in different frequency bands by using bitree complex wavelet. The amplitude entropy of each sub-band is calculated. Then, the entropy value is arranged in ascending order as the threshold value, the sub-band whose amplitude entropy is larger than the threshold value is extracted, and the optimal threshold is determined according to the kurtosis index, and the resonance band is extracted adaptively and effectively. Finally, the fault characteristic frequency of the bearing can be accurately identified by the Teager energy spectrum analysis of the resonance band, and the effectiveness of the method is verified by signal simulation and experimental data analysis.
【作者單位】: 內(nèi)蒙古科技大學(xué)機(jī)械工程學(xué)院;
【基金】:國家自然科學(xué)基金資助項目(21366017) 內(nèi)蒙古自治區(qū)自然科學(xué)基金資助項目(2012MS0717)
【分類號】:TH133.33
【正文快照】: 引言滾動軸承在各種工業(yè)現(xiàn)場中被廣泛應(yīng)用,當(dāng)軸承出現(xiàn)故障時,設(shè)備及其他零件很容易受到毀壞,這會導(dǎo)致人員和經(jīng)濟(jì)遭受巨大損失。因此,在故障剛剛萌發(fā)、程度尚輕微時就能夠準(zhǔn)確、有效地檢測出軸承元件故障對預(yù)防事故的發(fā)生具有重要意義[1]。當(dāng)滾動軸承出現(xiàn)點蝕、剝落和裂紋等局
【相似文獻(xiàn)】
相關(guān)期刊論文 前1條
1 張玉山;張海濤;;利用Teager能量算子監(jiān)測齒輪箱狀態(tài)的研究[J];廊坊師范學(xué)院學(xué)報(自然科學(xué)版);2013年03期
,本文編號:1478238
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1478238.html
最近更新
教材專著