大型低揚(yáng)程泵優(yōu)化設(shè)計(jì)及內(nèi)部流動(dòng)特性研究
本文關(guān)鍵詞:大型低揚(yáng)程泵優(yōu)化設(shè)計(jì)及內(nèi)部流動(dòng)特性研究 出處:《江蘇大學(xué)》2015年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 軸流泵 導(dǎo)葉與葉輪匹配 混流泵 雙蝸殼 壓力脈動(dòng) 流動(dòng)誘導(dǎo)噪聲 空化 數(shù)值模擬 試驗(yàn)
【摘要】:能源問題是當(dāng)今全球普遍關(guān)注的問題,也是發(fā)展國(guó)民經(jīng)濟(jì),改善國(guó)民生活水平的重要物質(zhì)基礎(chǔ)。據(jù)不完全統(tǒng)計(jì),泵的耗電量約占全國(guó)總發(fā)電量的17%。因此提高泵的設(shè)計(jì)水平對(duì)構(gòu)建環(huán)境友好型,資源節(jié)約型社會(huì)的作用顯著。低揚(yáng)程泵站在長(zhǎng)江中下游平原、黃淮海平原、東北平原和珠江三角洲等經(jīng)濟(jì)發(fā)達(dá)地區(qū)的水資源調(diào)配、水環(huán)境改善、城市防洪和灌溉排水等領(lǐng)域應(yīng)用廣泛,對(duì)提高防御自然災(zāi)害的能力、促進(jìn)我國(guó)社會(huì)經(jīng)濟(jì)的快速和可持續(xù)發(fā)展發(fā)揮了重要作用。我國(guó)低揚(yáng)程泵站的總量及規(guī)模居世界第一,每年消耗的電能相當(dāng)可觀。在能源日益緊張的今天,進(jìn)一步提高低揚(yáng)程泵裝置的效率對(duì)降低泵站運(yùn)行成本和節(jié)能減排具有十分重要的意義。大型低揚(yáng)程立式泵相對(duì)于其它類型的泵有如下優(yōu)點(diǎn):1)葉輪淹沒在水里,有利于保證不發(fā)生空化;2)啟動(dòng)時(shí)不必灌引水(排氣),上水快,有利于實(shí)現(xiàn)自動(dòng)運(yùn)行;3)占地面積小。雖然離心泵的水力性能好,但結(jié)構(gòu)復(fù)雜。因此除在各個(gè)泵站應(yīng)用于生產(chǎn)外,軸流泵和混流泵也廣泛應(yīng)用于經(jīng)濟(jì)社會(huì)各個(gè)領(lǐng)域中。軸流泵的葉間匹配問題嚴(yán)重影響到泵的性能,應(yīng)進(jìn)一步通過研究軸流泵導(dǎo)葉體與葉輪的流場(chǎng)優(yōu)化匹配來(lái)提高泵的性能,但從水泵的平穩(wěn)運(yùn)行、空化以及效率等不同方面綜合考慮,軸流泵的高效區(qū)不夠?qū)拸V,不能適用于揚(yáng)程變化較大的場(chǎng)合。相對(duì)于軸流泵,混流泵不僅高效區(qū)較寬,并且具有流量、揚(yáng)程變化范圍大,運(yùn)行穩(wěn)定等特點(diǎn),是一種較為理想的泵型。本文采用理論分析、數(shù)值模擬計(jì)算以及模型試驗(yàn)等方法研究了低揚(yáng)程軸流的導(dǎo)葉體與葉輪的流場(chǎng)優(yōu)化匹配問題,同時(shí)也優(yōu)化設(shè)計(jì)出了一臺(tái)高比轉(zhuǎn)數(shù)雙蝸殼式混流泵,并對(duì)混流泵模型進(jìn)行了非定常壓力脈動(dòng)特性研究、流動(dòng)誘導(dǎo)噪聲分析以及空化特性預(yù)測(cè)。本文的主要研究工作及創(chuàng)新性成果有:1、提出并解決了軸流泵導(dǎo)葉體與葉輪的流場(chǎng)優(yōu)化匹配問題,創(chuàng)造性地將導(dǎo)葉體的導(dǎo)葉片分為進(jìn)口段、中段和出口段3個(gè)部分,中段和出口段固定,起到固定支撐水泵導(dǎo)軸承座的作用。2、首次提出軸流泵導(dǎo)葉片進(jìn)口段進(jìn)口角度可調(diào),實(shí)現(xiàn)與葉輪葉片出口水流流場(chǎng)的匹配,以減小導(dǎo)葉進(jìn)口在非設(shè)計(jì)工況下的沖擊損失;研究了軸流泵導(dǎo)葉片進(jìn)口角度對(duì)泵裝置水力性能的影響規(guī)律。導(dǎo)葉片進(jìn)口角度的改變影響到導(dǎo)葉體內(nèi)的流態(tài)及其水力損失,從而影響到泵裝置的能量性能;在軸流泵導(dǎo)葉片原設(shè)計(jì)進(jìn)口角度的基礎(chǔ)上,沿順時(shí)針方向旋轉(zhuǎn)適當(dāng)角度,可擴(kuò)大低揚(yáng)程泵裝置高效運(yùn)行的范圍,顯著提高偏離設(shè)計(jì)工況點(diǎn)的低揚(yáng)程、大流量區(qū)的效率。3、首次開發(fā)了一臺(tái)高性能的雙蝸殼混流泵水力模型。通過對(duì)優(yōu)化前后的混流泵模型進(jìn)行數(shù)值模擬,結(jié)果表明最終所采用的雙蝸殼結(jié)構(gòu)的混流泵其內(nèi)部流態(tài)優(yōu)于優(yōu)化前的單蝸殼結(jié)構(gòu)的混流泵,并且雙蝸殼混流泵的徑向力也比單蝸殼的小,這也說(shuō)明相對(duì)單蝸殼結(jié)構(gòu),優(yōu)化后的雙蝸殼混流泵水力模型具有一定的優(yōu)越性。然后將雙蝸殼混流泵模型加工成實(shí)體,進(jìn)行外特性試驗(yàn),試驗(yàn)結(jié)果與數(shù)值模擬的結(jié)果吻合程度較高,表明本文在優(yōu)化過程中采用的數(shù)值計(jì)算方法的準(zhǔn)確性,為雙蝸殼混流泵的非定常壓力脈動(dòng)特性研究、流動(dòng)誘導(dǎo)噪聲分析以及空化特性預(yù)測(cè)提供了技術(shù)支撐。4、首次對(duì)混流泵內(nèi)部在不同工況下的壓力脈動(dòng)特性進(jìn)行了研究。對(duì)混流泵在不同工況下分別進(jìn)行了非定常數(shù)值計(jì)算,分析了混流泵內(nèi)部不同位置監(jiān)測(cè)點(diǎn)的壓力脈動(dòng)特性,研究表明:混流泵葉輪進(jìn)出口壓力脈動(dòng)幅值均是沿著輪轂到輪緣呈逐漸遞增的趨勢(shì),對(duì)于輪緣部位進(jìn)行優(yōu)化是改善混流泵內(nèi)壓力脈動(dòng)的關(guān)鍵;混流泵的進(jìn)口壓力脈動(dòng)幅度最大,進(jìn)口部位是影響機(jī)組穩(wěn)定運(yùn)行的關(guān)鍵,在混流泵水力設(shè)計(jì)過程中應(yīng)予以重視;葉輪出口和蝸殼隔舌處壓力脈動(dòng)最大。沿著蝸殼周向,蝸殼隔舌處由于受到蝸殼和葉輪的動(dòng)靜干涉作用,此處壓力脈動(dòng)最大,隨著監(jiān)測(cè)點(diǎn)遠(yuǎn)離隔舌,各點(diǎn)的壓力脈動(dòng)逐漸減小,受動(dòng)靜干涉的影響也逐步減弱;蝸殼內(nèi)側(cè)流道的壓力脈動(dòng)幅度高于外側(cè);不同工況下,混流泵各處的壓力脈動(dòng)主頻均為葉頻,大流量工況下各監(jiān)測(cè)點(diǎn)壓力脈動(dòng)幅值較小;葉輪出口處以及蝸殼隔舌處由于受到動(dòng)靜干涉作用,其壓力脈動(dòng)頻域特性比較復(fù)雜,相對(duì)于其它部位,這兩處壓力脈動(dòng)高頻成分比較明顯。5、首次采用基于CFD/CA的方法對(duì)混流泵在不同工況下由葉片旋轉(zhuǎn)偶極子源作用的噪聲進(jìn)行了研究。結(jié)果表明:混流泵葉輪和蝸殼隔舌部位的動(dòng)靜干涉作用是混流泵流動(dòng)誘導(dǎo)噪聲的主要來(lái)源;壓力脈動(dòng)的主頻與外場(chǎng)噪聲的主頻并不一致,壓力脈動(dòng)的主頻對(duì)于噪聲的輻射水平有影響但不能直接決定其大小,混流泵的結(jié)構(gòu)振動(dòng)模態(tài)對(duì)于噪聲輻射水平也起著關(guān)鍵作用,尤其是當(dāng)泵體的固有頻率與壓力脈動(dòng)主頻相接近時(shí),容易引起共振,會(huì)導(dǎo)致外場(chǎng)噪聲輻射值的明顯增加;流量對(duì)于噪聲的指向性幾乎無(wú)影響,但是對(duì)于噪聲的輻射能力影響比較明顯,小流量工況下(0.8 Qd)噪聲輻射能力最強(qiáng),設(shè)計(jì)工況(Qd)次之,大流量工況下(1.29)噪聲輻射能力最弱,這與非定常壓力脈動(dòng)研究所得到的隨著流量的增大,壓力脈動(dòng)幅值逐漸減小的結(jié)論相吻合,說(shuō)明不同工況下壓力脈動(dòng)的幅值對(duì)噪聲的輻射水平有著直接的影響,這對(duì)研究混流泵內(nèi)部壓力脈動(dòng)對(duì)于流動(dòng)噪聲影響的研究具有參考作用。6、研究了空化工況下混流泵揚(yáng)程下降的機(jī)理,獲得了混流泵葉輪內(nèi)的空化現(xiàn)象初步規(guī)律。對(duì)泵空化的基本參數(shù)以及空化余量的測(cè)量作了分析,然后通過CFD技術(shù)對(duì)混流泵的模型進(jìn)行了空化特性預(yù)測(cè),初步揭示了空化工況下混流泵揚(yáng)程下降的機(jī)理:混流泵葉輪內(nèi)的空化現(xiàn)象最初發(fā)生在葉輪流道進(jìn)口處偏向輪緣一側(cè),隨著空化余量的降低,葉片背面靠近輪緣處開始出現(xiàn)空化,該空化區(qū)域從輪緣向輪轂方向延伸,并且逐漸向葉片中部擴(kuò)散,在空化嚴(yán)重時(shí),空化會(huì)對(duì)葉輪流道流體的正常流動(dòng)造成堵塞,導(dǎo)致混流泵揚(yáng)程的下降。
[Abstract]:The energy problem is a worldwide problem, but also the development of the national economy, improve the important material basis of the national standard of living. According to incomplete statistics, the power consumption of the pump of the total generating capacity of 17%. and improve the design level of the pump to build environment-friendly and resource-saving society. The role of low lift pumping stations downstream in the Yangtze River Plain, North China Plain, the allocation of water resources in economically developed areas of Northeast Plain and the Pearl River Delta, to improve the water environment, the application of city flood control and irrigation drainage and other fields widely, to improve the ability of preventing natural disasters, has played an important role in promoting the rapid and sustainable development of social economy in China. The total scale and I in low lift pumping stations ranked first in the world, the annual consumption of electricity is considerable. In today's increasingly tense energy, to further improve the efficiency of low lift pump system to reduce It is of great significance to the cost of pumping operation and energy saving of large low lift vertical pump. Compared with other types of pumps have the following advantages: 1) impeller submerged in the water, to ensure that no cavitation; 2) start without irrigation water (exhaust), fast water, conducive to the realization of automatic operation; 3) small area. Although the hydraulic performance of centrifugal pump, but the structure is complex. Therefore except in various pumping stations used in production, axial and mixed flow pump is widely used in economic and social fields. The axial flow pump blade matching problems seriously affect the performance of the pump, should be further studied by axial flow pump guide vane and impeller flow field optimization, to improve the performance of the pump, but the smooth operation of the pump, cavitation and efficiency from the aspects of comprehensive consideration, high efficiency of axial flow pump is not wide enough, not suitable for large changes in the relative lift occasion. In the axial flow pump, mixed flow pump not only high efficiency area is wide, and has a large range of flow, lift, stable operation characteristics, is an ideal type of pump. By theoretical analysis, numerical simulation and model test method of low lift axial guide vane and impeller matching problem flow field optimization, also designed a high speed double volute mixed flow pump, and the mixed flow pump model of unsteady pressure fluctuation characteristics of the flow induced noise, analysis and prediction of cavitation performance. The main research work and innovative achievements are: 1, put forward and solved the axial flow pump vane and impeller, guide vane flow field optimization problems, creatively divided into the guide vane inlet section, 3 middle part and the outlet section, middle section and exit section is fixed, play the role of the.2 fixed support pump guide bearing for the first time. The axial flow pump inlet guide vane inlet angle adjustable, matching and impeller blade outlet flow, to reduce the impact loss of guide vane inlet in non design conditions; Study on influence of axial flow pump of guide vane inlet angle on the hydraulic performance of pump system. Influence of guide vane inlet angle to guide flow pattern and hydraulic loss in leaf, which affects the energy performance of the pump device; based on the original design of the guide vane inlet angle of axial flow pump, clockwise the appropriate angle, can expand the efficient operation of low lift pump system range, significantly improve the low head deviation from the design point, the efficiency of.3 flow area, double volute mixed flow pump hydraulic model was developed for the first time a high performance. By numerical simulation of mixed flow pump model before and after the optimization. The results show that the double volute mixed flow structure of the final Mixed flow pump with single volute pump internal flow structure is better than before optimization, and the radial force of the double volute mixed flow pump is better than single scroll, which also shows that the relative single volute structure, double volute mixed flow pump hydraulic model after optimization has certain advantages. Then the double volute mixed flow pump model processing entity. External characteristic test, test results and numerical simulation results show that the accuracy degree is high, the numerical calculation method in the optimization process by the study of unsteady pressure pulsation characteristics for double volute mixed flow pump, induced by noise analysis and prediction of cavitation flow and provides technical support for the first time on.4, pressure fluctuation the internal mixed flow pump under different working conditions were studied. The mixed flow pump under different working conditions were unsteady numerical calculation, analysis of different monitoring point of mixed flow pump internal pressure The research shows that: the pulse characteristics of mixed flow pump impeller inlet and outlet pressure pulsation amplitude is the hub to the rim was gradually increasing trend for flange optimization is a key to improve the pressure pulsation in the mixed flow pump; mixed flow pump inlet pressure pulsation amplitude is maximum, the import department key influence the stable operation of the unit should be paid attention to. In the mixed flow pump hydraulic design process; the outlet of impeller and volute tongue. The maximum pressure fluctuation along the volute circumferential, volute tongue due to impeller and volute rotor stator interaction, the maximum pressure fluctuation, with the monitoring point away from the tongue, the pressure fluctuation decreases, affected by the interference of movement gradually weakened; the pressure pulsation amplitude of volute flow above the lateral side; under different conditions, the pressure pulsation frequency of mixed flow pump are all Ye Pin, the large flow rate condition monitoring The pressure fluctuation amplitude is smaller; the outlet of impeller and volute tongue due to rotor stator interaction, the pressure fluctuation frequency characteristics is more complex, relative to other parts, the two pressure pulsation frequency components were.5, for the first time using CFD/CA method based on the noise of mixed flow pump under different operating conditions by the blade rotating dipole source were studied. The results showed that the mixed flow pump impeller and volute tongue position of the rotor stator interaction is the main source of noise induced by mixed flow pump; frequency frequency and field noise of pressure fluctuation is not consistent, the frequency of pressure fluctuation influence but not directly determines the size of the radiation level of noise, modal Francis the pump for the noise radiation also plays a key role, especially the natural frequency and pressure pulsation frequency when the pump body is close, easy to cause The resonance will lead to significant increase of noise emission values of flow field; for the directivity of the noise almost no effect, but the ability of radiation noise impact is more obvious, the small flow rate condition (0.8 Qd) the strongest radiation noise, the design condition (Qd) of the large flow rate condition (1.29) noise radiation weakest this, and the unsteady pressure fluctuation by the study along with the increase of flow rate decreases, the pressure fluctuation amplitude is consistent with the conclusion, that has a direct impact on the level of radiation amplitude of pressure fluctuation under different conditions of noise, the internal pressure pulsation of mixed flow pump with reference for the study of flow noise.6 study on the mechanism of cavitation conditions, mixed flow pump head drop, obtained preliminary rules of cavitation of mixed flow pump impeller. The basic parameters of the pump cavitation and cavitation measurement are analyzed Then, through the model of CFD technology on the mixed flow pump of the cavitation prediction, reveal the mechanism of cavitation conditions of mixed flow pump head drop: cavitation phenomenon of mixed flow pump impeller in the first impeller inlet bias occurs in the rim side, with the decrease of the cavitation, the back of the blade near the rim began to cavitation, the cavitation the regional hub extending to the direction from the rim, and gradually spread to the central leaves, in serious cavitation, cavitation will normally flow on the impeller fluid cause blockage, resulting in a decline in head mixed flow pump.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TH31
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 董澤輝;我國(guó)大型低揚(yáng)程水泵的最新研究[J];水利水電工程設(shè)計(jì);2000年03期
2 周君亮;低揚(yáng)程泵站建設(shè)中裝置選用問題(上)[J];江蘇水利;2002年06期
3 張曉丹;;淺論實(shí)際設(shè)計(jì)工作中低揚(yáng)程水泵的合理選型[J];水利科技與經(jīng)濟(jì);2010年12期
4 王瑞華;潘道宏;王天華;劉永亮;;最小二乘向量機(jī)擬合低揚(yáng)程抽水站水位流量關(guān)系研究[J];江蘇水利;2012年07期
5 李國(guó)英;;從國(guó)內(nèi)外發(fā)展情況看:我國(guó)大型低揚(yáng)程排灌站建設(shè)存在的問題[J];治淮;1986年04期
6 謝漢章;;低揚(yáng)程地區(qū)泵站改造途徑[J];排灌機(jī)械;1989年01期
7 ;低揚(yáng)程大流量潛水軸流泵通過鑒定[J];江蘇工學(xué)院學(xué)報(bào);1991年01期
8 黃林泉;論我國(guó)低揚(yáng)程泵的發(fā)展[J];農(nóng)田水利與小水電;1991年05期
9 錢義達(dá),曹志高;低揚(yáng)程軸流泵站的綜合改造[J];水利水電技術(shù);1992年08期
10 關(guān)醒凡;金樹德;陳紅勛;謝達(dá)榮;;低揚(yáng)程水泵的研究與開發(fā)[J];排灌機(jī)械;1992年02期
相關(guān)會(huì)議論文 前2條
1 黃培;于永海;;立軸低揚(yáng)程泵站主要設(shè)備部件選型比較4[A];2009全國(guó)大型泵站更新改造研討暨新技術(shù)、新產(chǎn)品交流大會(huì)論文集[C];2009年
2 關(guān)醒凡;商明華;;以南水北調(diào)工程為鑒提高低揚(yáng)程泵站的技術(shù)水平[A];2009全國(guó)大型泵站更新改造研討暨新技術(shù)、新產(chǎn)品交流大會(huì)論文集[C];2009年
相關(guān)重要報(bào)紙文章 前5條
1 吳為;低揚(yáng)程 多功能 大流量水泵[N];中國(guó)水利報(bào);2003年
2 吳為;低揚(yáng)程 多功能 大流量水泵[N];中國(guó)水利報(bào);2003年
3 劉超;南水北調(diào)低揚(yáng)程水泵裝置選型和建議[N];中國(guó)水利報(bào);2004年
4 原無(wú)錫水泵廠總工程師/朱禮惕;實(shí)現(xiàn)大型泵設(shè)計(jì)的二次革命[N];中國(guó)工業(yè)報(bào);2003年
5 商青;南水北調(diào)工程所需主要機(jī)械設(shè)備簡(jiǎn)介邃一邋[N];中國(guó)水利報(bào);2003年
相關(guān)博士學(xué)位論文 前5條
1 施偉;大型低揚(yáng)程泵優(yōu)化設(shè)計(jì)及內(nèi)部流動(dòng)特性研究[D];江蘇大學(xué);2015年
2 梁金棟;低揚(yáng)程立式泵裝置優(yōu)化水力設(shè)計(jì)研究[D];揚(yáng)州大學(xué);2012年
3 葛強(qiáng);低揚(yáng)程水泵裝置水力特性換算與性能預(yù)測(cè)研究[D];河海大學(xué);2006年
4 黃良勇;低揚(yáng)程大型泵站過渡過程特性研究[D];江蘇大學(xué);2006年
5 陳松山;低揚(yáng)程大型泵站裝置特性研究[D];江蘇大學(xué);2007年
相關(guān)碩士學(xué)位論文 前5條
1 朱旭耀;駟馬山烏江泵站能量特性現(xiàn)場(chǎng)測(cè)試研究與應(yīng)用[D];揚(yáng)州大學(xué);2015年
2 張旭;特低揚(yáng)程大型豎井貫流泵裝置試驗(yàn)研究[D];揚(yáng)州大學(xué);2011年
3 黃金軍;葉輪直徑對(duì)低揚(yáng)程立式軸流泵裝置水力性能的影響[D];揚(yáng)州大學(xué);2008年
4 李彥軍;低揚(yáng)程大型泵站停泵動(dòng)態(tài)特性理論研究[D];揚(yáng)州大學(xué);2003年
5 吳開平;低揚(yáng)程立式軸流泵裝置數(shù)值模擬與模型試驗(yàn)研究[D];揚(yáng)州大學(xué);2006年
,本文編號(hào):1428276
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1428276.html