天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

用于入侵取證的大規(guī)模取證日志自動(dòng)簡(jiǎn)化技術(shù)研究

發(fā)布時(shí)間:2018-10-05 13:40
【摘要】:隨著信息技術(shù)的迅速發(fā)展,計(jì)算機(jī)犯罪問(wèn)題(如黑客入侵)逐漸成為不容忽視的不安定因素,直接影響了國(guó)家的政治、經(jīng)濟(jì)、文化和其他各個(gè)領(lǐng)域的正常秩序。在當(dāng)前形勢(shì)下,針對(duì)入侵取證技術(shù)的研究對(duì)于打擊計(jì)算機(jī)犯罪以及增強(qiáng)計(jì)算機(jī)網(wǎng)絡(luò)安全而言十分重要。各類(lèi)的日志數(shù)據(jù)是入侵取證分析的重要候選證據(jù)來(lái)源,有效地記錄了計(jì)算機(jī)入侵時(shí)產(chǎn)生的諸多用戶行為以及入侵檢測(cè)系統(tǒng)本身的行為。但是,現(xiàn)有的各類(lèi)日志數(shù)據(jù)用于取證分析時(shí)仍然存在著不少的問(wèn)題。其中比較突出的問(wèn)題就是日志數(shù)據(jù)集的規(guī)模過(guò)于龐大,每周的數(shù)據(jù)量可達(dá)數(shù)十萬(wàn)甚至幾百萬(wàn)條記錄,這必然使得有用信息(例如攻擊相關(guān)的事件)湮沒(méi)在大量正常系統(tǒng)行為觸發(fā)的無(wú)用或冗余事件之中,為入侵取證分析增加了難度。本文提出了一種基于信息論和屬性權(quán)重的并行取證日志自動(dòng)刪減方法,其工作原理是基于Hadoop開(kāi)源框架,使用MapReduce模型對(duì)多屬性進(jìn)行垂直劃分,每個(gè)屬性子集并行處理。針對(duì)每一個(gè)屬性子集,使用互信息和熵權(quán)值這兩個(gè)度量標(biāo)準(zhǔn)來(lái)考察當(dāng)前屬性與其他屬性的相關(guān)性。篩選出熵權(quán)值較大而互信息值較小的屬性一定是獨(dú)立的。此時(shí)將熵權(quán)值作為權(quán)重對(duì)選取的各個(gè)屬性進(jìn)行加權(quán),獲取一個(gè)Score值,對(duì)Score值排序,設(shè)置閾值,對(duì)需要?jiǎng)h除的冗余日志記錄作為中間結(jié)果。最后,運(yùn)用專門(mén)設(shè)計(jì)的函數(shù)對(duì)剩余日志記錄進(jìn)行二次簡(jiǎn)化,獲得需要?jiǎng)h除的冗余日志記錄。通過(guò)對(duì)幾個(gè)Windows平臺(tái)和Linux平臺(tái)上具有代表性的數(shù)據(jù)集進(jìn)行實(shí)驗(yàn),結(jié)果表明該方法快速高效、不需要任何先驗(yàn)知識(shí)、人工干預(yù)較少并且適用于大規(guī)模數(shù)據(jù)。
[Abstract]:With the rapid development of information technology, the problem of computer crime (such as hacking intrusion) has gradually become an unstable factor that can not be ignored, and has directly affected the normal order of the country in politics, economy, culture and other fields. In the current situation, the research of intrusion forensics is very important to combat computer crime and enhance the security of computer network. All kinds of log data are important candidate evidence sources for intrusion forensics analysis, which effectively record many user behaviors and the behavior of intrusion detection system (IDS). However, there are still many problems when the existing log data are used for forensic analysis. One of the more prominent problems is that the scale of the log data set is too large, the amount of data per week can reach hundreds of thousands or even millions of records. This inevitably causes useful information (such as attacks related events) to be annihilated in a large number of useless or redundant events triggered by normal system behavior, which makes it more difficult for intrusion forensics analysis. In this paper, a parallel forensics log automatic deletion method based on information theory and attribute weight is proposed. Its working principle is based on Hadoop open source framework, MapReduce model is used to divide multiple attributes vertically, and each attribute subset is processed in parallel. For each subset of attributes, mutual information and entropy weights are used to evaluate the correlation between the current attributes and other attributes. The attributes with larger entropy weight and smaller mutual information value must be independent. In this case, entropy weight is used as weight to weight the selected attributes, get a Score value, sort the Score value, set a threshold, and take redundant log records that need to be deleted as the intermediate results. Finally, the residual log records are simplified twice by using specially designed functions, and the redundant log records that need to be deleted are obtained. Experiments on several representative data sets on Windows and Linux platforms show that the proposed method is fast and efficient, does not require any prior knowledge, has less manual intervention and is suitable for large scale data.
【學(xué)位授予單位】:南京大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TP393.08

【參考文獻(xiàn)】

相關(guān)期刊論文 前9條

1 程苗;;基于云計(jì)算的Web數(shù)據(jù)挖掘[J];計(jì)算機(jī)科學(xué);2011年S1期

2 張凈;孫志揮;宋余慶;倪巍偉;晏燕華;;基于信息論的高維海量數(shù)據(jù)離群點(diǎn)挖掘[J];計(jì)算機(jī)科學(xué);2011年07期

3 王之元;楊學(xué)軍;;并行計(jì)算系統(tǒng)度量指標(biāo)綜述[J];計(jì)算機(jī)工程與科學(xué);2010年10期

4 史偉奇;張波云;謝冬青;;基于遠(yuǎn)程控制技術(shù)的動(dòng)態(tài)取證系統(tǒng)[J];計(jì)算機(jī)工程;2007年16期

5 高獻(xiàn)偉;鄭捷文;楊澤明;許榕生;;智能網(wǎng)絡(luò)取證系統(tǒng)[J];計(jì)算機(jī)仿真;2006年03期

6 郭新濤,梁敏,阮備軍,朱揚(yáng)勇;挖掘Web日志降低信息搜尋的時(shí)間費(fèi)用[J];計(jì)算機(jī)研究與發(fā)展;2004年10期

7 莊力可;張長(zhǎng)水;勒中堅(jiān);;基于時(shí)間密度的Web日志用戶瀏覽行為分析[J];計(jì)算機(jī)科學(xué);2004年04期

8 王玲,錢(qián)華林;計(jì)算機(jī)取證技術(shù)及其發(fā)展趨勢(shì)[J];軟件學(xué)報(bào);2003年09期

9 孫安香,宋君強(qiáng),伍湘君;并行計(jì)算的數(shù)據(jù)分配[J];計(jì)算機(jī)工程與科學(xué);1997年02期

相關(guān)碩士學(xué)位論文 前1條

1 段超;基于多屬性的空間離群點(diǎn)檢測(cè)算法研究[D];華東理工大學(xué);2013年

,

本文編號(hào):2253604

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/zhengzhijingjixuelunwen/2253604.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b7d7f***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com