Chebyshev多項(xiàng)式在公鑰密碼中的應(yīng)用
[Abstract]:With the rapid development of communication technology, the application of public key cryptosystem in the fields of politics, economy, military and so on is becoming more and more popular, and the security of public key cryptosystem has been paid more and more attention. In this paper, several public-key cryptosystems based on Chebyshev polynomials are studied, and the security of cryptosystems is demonstrated by using the provable security idea. It is pointed out that the security of Chebyshev public key cryptosystem over finite fields is equivalent to the solution of discrete logarithm in some cases, and in some cases the iterative definition of Chebyshev public key cryptosystem is higher than that of solving discrete logarithm. Chebyshev polynomials can be regarded as a sequence of linear shift registers. Using this property, the period of Chebyshev polynomials over finite fields is studied in this paper, and the effect of period on the security of cryptosystems is analyzed in detail. Some suggestions are put forward for the selection of parameters: in the case of module P, there should be a large prime factor for P-1 and P1 respectively, which can effectively avoid the effect of small period on the security of cryptosystem. The advantages and disadvantages of three kinds of Chebyshev public key cryptosystems over finite fields and finite rings are compared. The fast algorithm of Chebyshev public key cryptosystems over finite rings is given by using Sun Tzu Theorem and the property of periodicity. This fast algorithm greatly reduces bit operation, and allows parallel computation. The increase of computing speed is very obvious. RSA. Lucas and Chebyshev public key cryptosystems are all applications of Dickson polynomials. In this paper, we study the periodicity of Chebyshev polynomials to compare their periods. The security of these cryptosystems is analyzed from the point of view of periodicity, and some suggestions on the selection of parameters are put forward. Through the research of periodicity, it is pointed out that cyclic attack is essentially a small period attack, and a more efficient attack is proposed for RSA like public-key cryptosystem. Cyclic attacks require repeated power operations on ciphertext, which requires multiple multiplications of the ciphertext itself. In order to resist the cyclic attack, the N=pq in N=pq system should satisfy p-1 and g-1 with a large prime factor. In this paper, we give a simple proof combining with the properties of Euler function.
【學(xué)位授予單位】:中南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN918.1;O174.14
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 姜楠;金英善;崔曉鋒;劉波;李禾;;基于RSA算法的文件加密系統(tǒng)設(shè)計(jì)[J];大連民族學(xué)院學(xué)報(bào);2013年05期
2 高衛(wèi)斌;;云數(shù)據(jù)安全問(wèn)題與對(duì)策的研究[J];信息安全與技術(shù);2013年11期
3 肖建飛;;“E商貿(mào)通”在電子商務(wù)中的應(yīng)用和實(shí)現(xiàn)[J];電腦知識(shí)與技術(shù);2013年36期
4 宋長(zhǎng)軍;白永祥;;橢圓曲線及其在密碼學(xué)中的應(yīng)用研究[J];電腦知識(shí)與技術(shù);2013年34期
5 郭曉;李鑒增;;基于移動(dòng)終端的數(shù)字電視機(jī)條件接收方案研究[J];中國(guó)傳媒大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年02期
6 李拴保;楊鳳霞;;基于身份的數(shù)字簽名綜述[J];河南財(cái)政稅務(wù)高等?茖W(xué)校學(xué)報(bào);2014年02期
7 王秋華;呂秋云;王小軍;駱懿;游林;;無(wú)線傳感器網(wǎng)絡(luò)中一種新的無(wú)條件安全密鑰協(xié)商模型[J];傳感技術(shù)學(xué)報(bào);2014年06期
8 王田;崔小欣;廖凱;廖楠;黃穎;張瀟;于敦山;;RSA加密中基于二次Booth編碼的Montgomery乘法器(英文)[J];北京大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年04期
9 羅江洲;;具有附加性質(zhì)的數(shù)字簽名發(fā)展現(xiàn)狀[J];電腦知識(shí)與技術(shù);2014年21期
10 陶建平;;一個(gè)基于ECC的可證安全的多代理簽名方案[J];公安海警高等?茖W(xué)校學(xué)報(bào);2009年03期
相關(guān)博士學(xué)位論文 前10條
1 肖攸安;網(wǎng)絡(luò)信息安全中的橢圓曲線公鑰密碼體系的研究[D];武漢理工大學(xué);2003年
2 孔凡玉;公鑰密碼體制中的若干算法研究[D];山東大學(xué);2006年
3 韋衛(wèi);Internet網(wǎng)絡(luò)安全的若干理論研究與安全Web系統(tǒng)的設(shè)計(jì)實(shí)現(xiàn)[D];中國(guó)科學(xué)院研究生院(計(jì)算技術(shù)研究所);1999年
4 孫躍剛;橢圓曲線密碼體制中若干問(wèn)題的研究[D];吉林大學(xué);2009年
5 李智慧;基于Lucas序列的公鑰密碼體制的研究[D];北京郵電大學(xué);2012年
6 孫昌霞;基于屬性的數(shù)字簽名算法設(shè)計(jì)與分析[D];西安電子科技大學(xué);2013年
7 崔翰川;面向共享的矢量地理數(shù)據(jù)安全關(guān)鍵技術(shù)研究[D];南京師范大學(xué);2013年
8 游偉;基于單圈T-函數(shù)導(dǎo)出序列的構(gòu)造與分析[D];解放軍信息工程大學(xué);2013年
9 楊易e,
本文編號(hào):2145860
本文鏈接:http://sikaile.net/jingjilunwen/zhengzhijingjixuelunwen/2145860.html