天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 經(jīng)濟(jì)論文 > 資本論文 >

商業(yè)銀行知識產(chǎn)權(quán)質(zhì)押貸款風(fēng)險預(yù)警研究

發(fā)布時間:2018-01-06 14:18

  本文關(guān)鍵詞:商業(yè)銀行知識產(chǎn)權(quán)質(zhì)押貸款風(fēng)險預(yù)警研究 出處:《天津財經(jīng)大學(xué)》2013年碩士論文 論文類型:學(xué)位論文


  更多相關(guān)文章: 知識產(chǎn)權(quán)質(zhì)押貸款 風(fēng)險預(yù)警指標(biāo) BP神經(jīng)網(wǎng)絡(luò) 風(fēng)險預(yù)警模型


【摘要】:隨著知識經(jīng)濟(jì)的迅猛發(fā)展,知識產(chǎn)權(quán)質(zhì)押貸款為企業(yè)加速科技成果資本化、拓展融資渠道提供了新的途徑。2008年以來,政府為促進(jìn)該項業(yè)務(wù)的開展先后出臺了各項辦法與指導(dǎo)意見,扶持高新技術(shù)企業(yè)利用知識產(chǎn)權(quán)獲得貸款,但作為該項業(yè)務(wù)的主角——商業(yè)銀行卻因無法控制知識產(chǎn)權(quán)自身帶來的高風(fēng)險而謹(jǐn)慎行事。這不僅不利于商業(yè)銀行在知識經(jīng)濟(jì)時代中積極調(diào)整原有擔(dān)保結(jié)構(gòu),搶占新市場,更不利于整個經(jīng)濟(jì)市場上知識產(chǎn)權(quán)資本的增值,對科技創(chuàng)新產(chǎn)生一定的負(fù)面效應(yīng)。 如何才能合理預(yù)測知識產(chǎn)權(quán)質(zhì)押貸款的風(fēng)險呢?文章針對商業(yè)銀行面臨的這一棘手問題展開關(guān)于知識產(chǎn)權(quán)質(zhì)押貸款風(fēng)險預(yù)警的研究。一般來說風(fēng)險預(yù)警研究主要包括風(fēng)險識別和風(fēng)險評估兩大部分,文章主要從四個方面進(jìn)行詳細(xì)闡述。第一,知識產(chǎn)權(quán)質(zhì)押貸款風(fēng)險理論主要由有限性理論、新經(jīng)濟(jì)增長理論、不完全契約理論、預(yù)期收入理論、信息不對稱理論五大部分組成,這五大理論從不同角度為風(fēng)險成因提供了理論支持。第二,從宏觀和微觀兩個層面對知識產(chǎn)權(quán)質(zhì)押貸款風(fēng)險影響因素進(jìn)行識別并建立了囊括準(zhǔn)入性指標(biāo)與判定性指標(biāo)的風(fēng)險預(yù)警指標(biāo)體系。經(jīng)過研究發(fā)現(xiàn),知識產(chǎn)權(quán)自身的無形性與獨特性是產(chǎn)生高風(fēng)險的根源,同時知識產(chǎn)權(quán)的法律屬性導(dǎo)致商業(yè)銀行可能遭受不可逆轉(zhuǎn)的損失。第三,通過對已有風(fēng)險預(yù)警模型的對比發(fā)現(xiàn),BP神經(jīng)網(wǎng)絡(luò)是一個具有較強的自適應(yīng)性、自我學(xué)習(xí)能力和容錯性的非線性動態(tài)模型,適合對知識產(chǎn)權(quán)質(zhì)押貸款業(yè)務(wù)的風(fēng)險進(jìn)行評估。第四,文章采用主成分分析法對知識產(chǎn)權(quán)質(zhì)押風(fēng)險狀況進(jìn)行判定,借鑒著名的“3σ”法則確定警度標(biāo)準(zhǔn),構(gòu)建了基于LM算法的三層BP神經(jīng)網(wǎng)絡(luò)模型,并對上市商業(yè)銀行的數(shù)據(jù)進(jìn)行訓(xùn)練與測試,實驗結(jié)果表明該模型的準(zhǔn)確率達(dá)到95%,能夠有效的為商業(yè)銀行知識產(chǎn)權(quán)質(zhì)押貸款業(yè)務(wù)的風(fēng)險進(jìn)行預(yù)警。
[Abstract]:With the rapid development of knowledge economy, intellectual property mortgage loan has provided a new way for enterprises to accelerate the capitalization of scientific and technological achievements and expand financing channels. Since 2008. In order to promote the development of the business, the government has issued various measures and guidance to support high-tech enterprises to use intellectual property rights to obtain loans. However, as the protagonist of this business, commercial banks act prudently because they cannot control the high risks brought about by intellectual property rights, which is not only unfavorable for commercial banks to actively adjust the original guarantee structure in the era of knowledge economy. Seizing the new market is not conducive to the appreciation of intellectual property capital in the whole economic market, and has a certain negative effect on scientific and technological innovation. How can we reasonably predict the risk of intellectual property mortgage loans? In this paper, commercial banks face the thorny problem of intellectual property mortgage loan risk warning research. Generally speaking, risk early warning research mainly includes two parts: risk identification and risk assessment. Firstly, the risk theory of intellectual property mortgage loan mainly consists of finiteness theory, new economic growth theory, incomplete contract theory and expected income theory. The information asymmetry theory consists of five parts. These five theories provide theoretical support for the causes of risk from different angles. Second. This paper identifies the risk factors of intellectual property mortgage loan from macro and micro levels and establishes a risk early warning index system which includes access index and judgment index. The intangibility and uniqueness of intellectual property itself is the source of high risk. Meanwhile, the legal attribute of intellectual property rights may lead to irreversible losses to commercial banks. By comparing the existing risk warning models, it is found that BP neural network is a nonlinear dynamic model with strong self-adaptability, self-learning ability and fault tolerance. It is suitable to evaluate the risk of intellectual property mortgage loan business. 4th, this paper uses principal component analysis method to judge the risk of intellectual property mortgage, and uses the famous "3 蟽" rule to determine the alarm standard. A three-layer BP neural network model based on LM algorithm is constructed, and the data of listed commercial banks are trained and tested. The experimental results show that the accuracy of the model reaches 95%. It can effectively warn the risk of intellectual property mortgage loan business of commercial banks.
【學(xué)位授予單位】:天津財經(jīng)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:F832.4

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 賀曉波,張宇紅;商業(yè)銀行風(fēng)險預(yù)警系統(tǒng)的建立及其實證分析[J];金融論壇;2001年10期

2 梁冰;;構(gòu)建現(xiàn)代擔(dān)保物權(quán)制度提升中小企業(yè)融資能力[J];財政研究;2006年03期

3 鄧漢慧,張子剛;西蒙的有限理性研究綜述[J];中國地質(zhì)大學(xué)學(xué)報(社會科學(xué)版);2004年06期

4 徐棟;;中外知識產(chǎn)權(quán)質(zhì)押貸款發(fā)展?fàn)顩r研究[J];電子知識產(chǎn)權(quán);2009年08期

5 周麗;;我國知識產(chǎn)權(quán)質(zhì)押融資面臨的困境、挑戰(zhàn)及對策[J];電子知識產(chǎn)權(quán);2011年07期

6 陳朝暉;張艷芳;;基于BP神經(jīng)網(wǎng)絡(luò)的商業(yè)銀行風(fēng)險預(yù)警模型研究[J];福建商業(yè)高等?茖W(xué)校學(xué)報;2011年01期

7 喬生;班小輝;;知識產(chǎn)權(quán)質(zhì)押融資制度現(xiàn)狀與完善[J];法律適用;2009年08期

8 王瓊,劉日方,潘杰義;商業(yè)銀行信貸風(fēng)險預(yù)警系統(tǒng)研究[J];西北工業(yè)大學(xué)學(xué)報(社會科學(xué)版);1999年03期

9 馬蘭芳,劉金蘭,楊軍,花保民;人工神經(jīng)網(wǎng)絡(luò)在商業(yè)銀行監(jiān)測預(yù)警中的應(yīng)用研究[J];管理工程學(xué)報;2002年02期

10 苑澤明;姚王信;高婷;;企業(yè)知識產(chǎn)權(quán)融資:需求、供給與實現(xiàn)路徑[J];華東經(jīng)濟(jì)管理;2010年05期

,

本文編號:1388227

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/zbyz/1388227.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1af06***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com