基于用戶需求深度驅(qū)動的個性化推薦算法研究
[Abstract]:With the advent of the Internet era, especially the mobile Internet era, we are all in the era of "information explosion". Because of the enhancement of individualized demand, users need individuals to filter out a large number of invalid information. There is still no fundamental solution to the problem of too much information. As a result, personalized recommendation algorithm appeared and became a hot topic. Since the emergence of personalized recommendation system, many experts and scholars have proposed their own research methods of personalized recommendation system. The current mainstream recommendation algorithms are mainly content-based recommendation algorithms, graph structure-based recommendation algorithms, collaborative recommendation algorithms and hybrid recommendation algorithms. However, the current recommendation algorithms have some problems such as cold start, data sparsity and recommendation lag, which affect the recommendation accuracy due to over-reliance on the dominant score of the data. In this paper, the optimization of personalized recommendation algorithm is studied, with emphasis on how to make full use of the implicit behavior of users and industry domain knowledge for users to carry out more accurate personalized recommendation in-depth research. In this paper, a personalized recommendation algorithm based on user's demand depth is proposed. Aiming at the problems of cold start, data sparsity, recommendation lag and so on, the algorithm puts forward its own improvement scheme, and adds the hidden behavior analysis of users in the process of user clustering. The user's hidden behavior information and user's attribute information are used to cluster the user. At the same time, when generating the recommendation list for users, we add the domain knowledge of the industry, according to big data to generate the industry chain, from the horizontal recommendation of similar products and vertical recommendation of related products, we can guide the consumption of users. Help users to identify potential needs, generating considerable economic and social benefits. Finally, the recommendation system is designed as a closed-loop control system. Because the requirements will often change, the system will detect the recommendation accuracy in a specific time window after generating the recommendation list, which can timely detect the recommendation accuracy and facilitate the timely adjustment of recommendation list. This paper uses the data of the Tianchi contest held by Taobao in the experiment of the algorithm, and carries on the comparison and verification of the algorithm through the data set. The proposed algorithm is compared with the previous user clustering algorithm and bipartite graph recommendation algorithm. The experimental results show that the proposed algorithm improves the clustering accuracy and recommendation accuracy obviously. Through the closed-loop design of recommendation system, the stability of recommendation accuracy is effectively guaranteed and the recommendation lag is avoided.
【學(xué)位授予單位】:山東師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:F274
【參考文獻】
相關(guān)期刊論文 前10條
1 方冰;牛曉婷;;基于標(biāo)簽的矩陣分解推薦算法[J];計算機應(yīng)用研究;2017年04期
2 劉欣亮;裴亞輝;;基于用戶反饋的時序二部圖推薦方法[J];河南大學(xué)學(xué)報(自然科學(xué)版);2015年02期
3 黃仁;孟婷婷;;個性化推薦算法綜述[J];中小企業(yè)管理與科技(中旬刊);2015年03期
4 ;家裝業(yè)成互聯(lián)網(wǎng)要顛覆的Next Station[J];中國電信業(yè);2015年03期
5 孫光福;吳樂;劉淇;朱琛;陳恩紅;;基于時序行為的協(xié)同過濾推薦算法[J];軟件學(xué)報;2013年11期
6 張曼;;網(wǎng)絡(luò)消費者行為分析[J];科技致富向?qū)?2013年02期
7 陳全;張玲玲;石勇;;基于領(lǐng)域知識的個性化推薦模型及其應(yīng)用研究[J];管理學(xué)報;2012年10期
8 楊博;趙鵬飛;;推薦算法綜述[J];山西大學(xué)學(xué)報(自然科學(xué)版);2011年03期
9 謝海濤;孟祥武;;適應(yīng)用戶需求進化的個性化信息服務(wù)模型[J];電子學(xué)報;2011年03期
10 黃裕洋;金遠平;;一種綜合用戶和項目因素的協(xié)同過濾推薦算法[J];東南大學(xué)學(xué)報(自然科學(xué)版);2010年05期
相關(guān)碩士學(xué)位論文 前4條
1 杜彥永;基于用戶行為協(xié)同過濾推薦算法[D];安徽理工大學(xué);2016年
2 王海燕;電子商務(wù)協(xié)同過濾推薦算法的優(yōu)化研究[D];河北工程大學(xué);2016年
3 李熠;引入信任的二部圖電子商務(wù)個性化推薦算法改進研究[D];電子科技大學(xué);2015年
4 張亮;基于聚類技術(shù)的推薦算法研究[D];電子科技大學(xué);2012年
,本文編號:2391290
本文鏈接:http://sikaile.net/jingjilunwen/xmjj/2391290.html