幾類不確定性期權(quán)定價模型及相關(guān)問題研究
[Abstract]:This dissertation mainly deals with the option pricing problem. In view of the deficiency of the Black-Merton-Scholes model, we have done a lot of development. Options are one of the derivatives, an important role of which is to provide insurance for investors' portfolios. In recent decades, the development of the option market is rapid, one of which is that we can use the model and method to measure the price and the change trend of the option. Black and Scholes, at the same time of constructing the option pricing formula, introduced several unrealistic assumptions about the subject's assets, such as the geometric Brownian motion, the constant fluctuation rate, and so on. In view of the deficiency of these assumptions, the work done in this paper is mainly focused on two aspects, one of which is the relaxation of the assumption of constant fluctuation rate. In general, the factors that determine the price of an option are the following: the price of the subject's assets, the interest rate, the expiration time, the finalization of the price and the rate of volatility. In this case, other factors other than the fluctuation rate are basically observable or relatively easy to estimate in the market. Therefore, the model of volatility is the key to the option pricing problem. In order to solve this problem, the scholars have made a variety of attempts, and the fluctuation rate used in this paper is one of them. Its original idea is simple, and if we can't paint the exact change in the rate of volatility, at least we can determine its range of changes, giving the optimal range of the option price. The basic idea of this pricing model is the risk-neutral pricing, i.e., the price of the option is calculated through the risk neutral measure. But in the application process, because of the uncertainty of the fluctuation rate, the scholars have found that they often need to face a family of mutually strange probability measures, which brings difficulties to the determination of the final price. And this difficulty is difficult to overcome in a classical probability framework. Therefore, in this paper, we use the G-expectation framework to study the problem. G-expectation is a kind of sublinear expectation, which is a theoretical frame made by the academician of Pengtango in recent years. This theoretical framework is an extension of the classical probability theory, through which we have obtained a new perspective to view the classical probability theory. At the same time, the theoretical framework is a theory rooted in uncertainty, which comes from the uncertainty of the people, and is a kind of uncertainty that Nate has said. The uncertainty model of the volatility in the pricing of derivatives can be classified as this category, and G-expectation provides a powerful tool for us to study the model. On the other hand, the work on the other hand is the relaxation of the model of the change of the price of the subject's assets, that is, the object's assets are subject to the pseudo-geometric Brownian motion. Let's do two kinds of expansion, Levy model and fractional Brownian motion drive mode. Model. The Levy model is a class of market models driven by the Levy process The Levy process is a generalization of the Brownian motion. It is Markov and semi-linear. The distribution can be continuous or hop-free, and some Levy processes satisfy the "thick end" properties, which makes the Levy model have a great flexibility in application with respect to the B-M-S model. The fractional Brownian motion is not a half-time at the Hurst index, H-1/2, so that this kind of market model is out of the box and when the Hurst index is 1 H1/2, the increment between the asset prices is positively correlated and has long-term memory property, so that the fractional Brownian motion model can describe the fractal structure of the market to a certain extent Furthermore, the exploration of the process of the evolution of financial variables is strongly dependent on the past The information is inspired by the Ariojas et al (2007)[2], which, when considered in three types of models, The main research results of this dissertation are focused on In one of the following aspects, we construct a class of time-delay market models driven by G-Brownian motion B, that is, it is assumed that the stock price S satisfies the following stochastic delay differential equation: to be C ([--,0]; R) Value random process. {B (t), t {0} is G-Brownian motion {B (t), t {0} The rate of fluctuation in this model is varied within a certain range, so this is a class of waves The dynamic rate uncertainty model. Inspired by the Arriojas et al (2007), we also take into account the trend effect, that is, the stock price in the past may be right now On the basis of the research of Peng (2007), Bai-Lin (2010) and Ren (2013,2011), the validity of this class of stochastic time-delay models is discussed, and this model is applied in this part. Second, as a comparison with the first part, we consider the time-delay option pricing model driven by the Levy process and the fractional Brownian motion, and the Hurst index H of the fractional Brownian motion and one of the equation coefficients in the jump and fractional Brownian motion of the Levy process. Under the constraints of some regulative conditions, we respectively find the minimum measure of the equivalent confidence measure and the Follower-Schweizer, so that the corresponding time-delay European model is given. As an example of the first and second parts, we consider the mixed market model with time-delay composed of the fractional Brownian motion and the Levy process, and in the case of the jump in the Levy process is a power-jump, We prove that when 3/ 4H1, the hybrid market is complete and free of arbitrage and gives a European Finally, in the discussion of the option pricing problem of these markets, we have made some theoretical exploration on the G-Brownian motion, and expanded the research of Yamada, Yor and Yan, and obtained the generalized Ito of the G-Brownian motion.
【學(xué)位授予單位】:東華大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:O211.63;F830
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李慧玲;;分?jǐn)?shù)布朗運(yùn)動下信用風(fēng)險首次觸發(fā)范式[J];價值工程;2008年02期
2 何成潔;沈明軒;杜雪樵;;分?jǐn)?shù)布朗運(yùn)動環(huán)境下冪型支付的期權(quán)定價公式[J];合肥工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2009年06期
3 周圣武;劉海媛;;分?jǐn)?shù)布朗運(yùn)動環(huán)境下的冪期權(quán)定價[J];大學(xué)數(shù)學(xué);2009年05期
4 王劍君;;分?jǐn)?shù)布朗運(yùn)動環(huán)境中2種新型權(quán)證的定價[J];合肥工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2010年03期
5 桑利恒;杜雪樵;;分?jǐn)?shù)布朗運(yùn)動下的回望期權(quán)定價[J];合肥工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2010年05期
6 余東;柳雪飛;;關(guān)于分?jǐn)?shù)布朗運(yùn)動預(yù)測的研究(英文)[J];數(shù)學(xué)雜志;2010年06期
7 趙巍;;股價遵循分?jǐn)?shù)布朗運(yùn)動的最大值期權(quán)定價模型[J];數(shù)學(xué)的實(shí)踐與認(rèn)識;2011年03期
8 孫宗岐;劉煜;;帶跳分?jǐn)?shù)布朗運(yùn)動下最優(yōu)金融決策[J];西安工程大學(xué)學(xué)報;2012年02期
9 薛東輝,朱光喜,朱耀庭,,熊艷;分?jǐn)?shù)布朗運(yùn)動的平穩(wěn)性分析與描述[J];華中理工大學(xué)學(xué)報;1995年10期
10 黨柳夢;薛紅;盧俊香;;分?jǐn)?shù)布朗運(yùn)動環(huán)境下歐式籃子期權(quán)定價[J];哈爾濱商業(yè)大學(xué)學(xué)報(自然科學(xué)版);2013年05期
相關(guān)會議論文 前3條
1 郭蓉;;分?jǐn)?shù)布朗運(yùn)動驅(qū)動下系統(tǒng)的隨機(jī)平均法[A];第二屆全國隨機(jī)動力學(xué)學(xué)術(shù)會議摘要集與會議議程[C];2013年
2 薛紅;孫玉東;;分?jǐn)?shù)布朗運(yùn)動環(huán)境下幾何平均亞式期權(quán)定價模型[A];數(shù)學(xué)·力學(xué)·物理學(xué)·高新技術(shù)交叉研究進(jìn)展——2010(13)卷[C];2010年
3 張啟敏;;分?jǐn)?shù)布朗運(yùn)動環(huán)境下企業(yè)R&D項(xiàng)目評價的數(shù)值計算方法[A];中國企業(yè)運(yùn)籌學(xué)[C];2009年
相關(guān)博士學(xué)位論文 前7條
1 肖艷清;分?jǐn)?shù)布朗運(yùn)動驅(qū)動的隨機(jī)方程及其在期權(quán)定價中的應(yīng)用[D];中南大學(xué);2012年
2 黃文禮;基于分?jǐn)?shù)布朗運(yùn)動模型的金融衍生品定價[D];浙江大學(xué);2011年
3 戴洪帥;重分?jǐn)?shù)布朗運(yùn)動以及算子自相似高斯過程的弱極限定理[D];中南大學(xué);2010年
4 申廣君;幾種自相似高斯隨機(jī)系統(tǒng)的分析及相關(guān)問題[D];華東理工大學(xué);2011年
5 郭為軍;三維溢油數(shù)值模式研究及其在近海的應(yīng)用[D];大連理工大學(xué);2011年
6 張慶華;幾類不確定性期權(quán)定價模型及相關(guān)問題研究[D];東華大學(xué);2014年
7 柏立華;隨機(jī)控制理論在金融和保險中的應(yīng)用[D];南開大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 余征;混合分?jǐn)?shù)布朗運(yùn)動的性質(zhì)及其在金融中的應(yīng)用[D];東華大學(xué);2009年
2 張志;條件分?jǐn)?shù)布朗運(yùn)動環(huán)境下幾種期權(quán)的定價研究[D];中南大學(xué);2011年
3 黃開元;分?jǐn)?shù)布朗運(yùn)動環(huán)境下后定選擇權(quán)定價模型研究[D];西安工程大學(xué);2012年
4 成佩;分?jǐn)?shù)布朗運(yùn)動下的歐式外匯期權(quán)定價及實(shí)證分析[D];蘭州大學(xué);2013年
5 趙小康;混合分?jǐn)?shù)布朗運(yùn)動環(huán)境下的權(quán)證定價[D];華中科技大學(xué);2013年
6 李施荔;分?jǐn)?shù)布朗運(yùn)動下的期權(quán)定價問題研究[D];哈爾濱工程大學(xué);2012年
7 楊華偉;混合分?jǐn)?shù)布朗運(yùn)動下期權(quán)定價問題的研究[D];蘭州大學(xué);2010年
8 安磊;賦權(quán)分?jǐn)?shù)布朗運(yùn)動的軌道分析[D];東華大學(xué);2011年
9 宋燕燕;分?jǐn)?shù)布朗運(yùn)動驅(qū)動環(huán)境中的期權(quán)定價模型及投資組合[D];中國石油大學(xué);2011年
10 雷顯剛;混合分?jǐn)?shù)布朗運(yùn)動下帶交易費(fèi)的回望期權(quán)定價[D];華南理工大學(xué);2011年
本文編號:2480347
本文鏈接:http://sikaile.net/jingjilunwen/qihuoqq/2480347.html