基于交易費用的WCVaR投資組合模型研究
本文選題:最壞情況下的條件風險(WCVaR) + 混合分布; 參考:《廣東財經(jīng)大學》2014年碩士論文
【摘要】:風險度量模型CVaR(Conditional-value-at-risk,條件在險價值)有很多優(yōu)點,它即彌補了VaR(Value-at-risk,在險價值)模型的不足,也滿足一致性風險度量的要求,故一度受風險管理者的追捧。但在計算過程中,要求隨機變量分布情況已知的前提下進行度量的,而現(xiàn)實中的金融市場常常受到各種復雜因素的影響,尤其我國目前證券市場發(fā)展不完善,金融市場波動較大,,隨機變量分布信息無法完全知道,CVaR風險度量模型度量效率較低。隨后,Zhu-FuKushima率先提出了最壞情境下的條件在險價值,簡稱WCVaR(Worst-case CVaR),它刻畫了非完全信息下的風險,在現(xiàn)實中,我們無法預知某件事情的結果時,常常會考慮最壞情況發(fā)生時的情況,從而更好預知風險。 本文考慮現(xiàn)實中資產收益率服從混合分布下的WCVaR模型,并在模型中加入比例交易費用函數(shù),使得加入交易費用后的模型研究更貼近現(xiàn)實。然后利用向量自回歸構建收益率未來路徑,再根據(jù)上述回歸后殘差分布,判別殘差可能服從哪幾種概率分布情況,結合蒙特卡羅方法隨機生成未來資產收益率情景?紤]損失函數(shù)為線性的情況下,從而將不確定的線性規(guī)劃問題轉化為確定的線性規(guī)劃問題,利用Matlab中LP模塊,即可求出模型最優(yōu)解。模型結果證明,加入交易費用后,同等情況下風險相應有一定幅度增加,說明交易費用加入會相應增加風險,對現(xiàn)實中人們投資有一定指導性意義。
[Abstract]:The risk measurement model CVaRN Conditional-value-at-risk (conditional at risk value) has many advantages. It not only makes up for the deficiency of VaRN Value-at-riskmodel, but also meets the requirements of consistent risk measurement, so it was once sought after by risk managers. However, in the course of calculation, it is necessary to measure the distribution of random variables, but the real financial market is often affected by various complicated factors, especially the development of securities market is not perfect. Because of the volatility of the financial market, the risk measurement model of CVaR is less efficient because of the uncertainty of the random variable distribution information. Later, Zhu-Fuuseo first proposed that the worst-case condition is at risk value, or WCVaR(Worst-case Cvar Rao, which depicts the risk under incomplete information. In reality, when we cannot predict the outcome of something, we often take into account the worst-case scenario. Thus better anticipating the risks. In this paper, we consider the WCVaR model under the mixed distribution of the return rate of assets, and add the proportional transaction cost function to the model, which makes the research of the model closer to the reality after adding the transaction cost. Then the future path of return rate is constructed by using vector autoregressive method. Then according to the above regression residual distribution the probability distribution from which the residual may be obtained is determined and the future asset return scenario is randomly generated by using Monte Carlo method. When the loss function is linear, the uncertain linear programming problem is transformed into a definite linear programming problem. The optimal solution of the model can be obtained by using LP module in Matlab. The results of the model show that after the transaction cost is added, the risk will increase by a certain extent in the same situation, which means that the transaction cost will increase the risk accordingly, which is instructive to people's investment in reality.
【學位授予單位】:廣東財經(jīng)大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:F224;F832.51
【參考文獻】
相關期刊論文 前10條
1 韋增欣;韋鑫;周智超;;不同凸交易成本函數(shù)下的風險偏好投資組合模型[J];重慶理工大學學報(自然科學);2013年01期
2 許道寶;張芳;;基于歷史數(shù)據(jù)集生成情景樹的兩種新方法[J];工程數(shù)學學報;2013年03期
3 黃德春;張長征;湯云超;;含資本結構因子和交易費用的CVaR投資組合模型分析[J];經(jīng)濟與管理;2009年09期
4 潘東靜;寧玉富;;不確定環(huán)境下基于VaR和CVaR的投資組合優(yōu)化模型[J];計算機科學;2012年06期
5 高全勝,李選舉;基于CVaR的投資組合對資產變化的敏感性分析[J];數(shù)量經(jīng)濟技術經(jīng)濟研究;2005年06期
6 石曉芳;;隨機信息部分已知的比值優(yōu)化模型的割平面求解法[J];邵陽學院學報(自然科學版);2012年01期
7 賀月月;高岳林;;均值-WCVaR多階段投資組合優(yōu)化模型[J];統(tǒng)計與決策;2013年02期
8 王春峰,萬海暉,張維;金融市場風險測量模型——VaR[J];系統(tǒng)工程學報;2000年01期
9 陳金龍,張維;CVaR與投資組合優(yōu)化統(tǒng)一模型[J];系統(tǒng)工程理論方法應用;2002年01期
10 童小嬌;劉青;;離散界約束分布下的WCVaR風險分析及其應用[J];系統(tǒng)工程理論與實踐;2010年02期
相關博士學位論文 前1條
1 謝非;不確定條件下的企業(yè)國際貿易匯率風險度量與規(guī)避研究[D];重慶大學;2009年
本文編號:1947004
本文鏈接:http://sikaile.net/jingjilunwen/jinrongzhengquanlunwen/1947004.html