天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于EEMD的金融時(shí)間序列多尺度分析

發(fā)布時(shí)間:2018-05-07 12:14

  本文選題:金融時(shí)間序列 + 多尺度 ; 參考:《中國(guó)科學(xué)技術(shù)大學(xué)》2016年碩士論文


【摘要】:近年來(lái),隨著我國(guó)金融市場(chǎng)的發(fā)展以及投資品種的日益豐富,量化投資逐漸步入人們的視野,同時(shí)也將金融計(jì)量分析推至前所未有的高度。時(shí)間序列作為金融市場(chǎng)中最常見(jiàn)的觀測(cè)數(shù)據(jù),是時(shí)市場(chǎng)行為的真實(shí)刻畫(huà),通過(guò)對(duì)其進(jìn)行量化分析,能夠挖掘市場(chǎng)中潛在的信息,進(jìn)而為投資決策提供理論和技術(shù)支撐,是策略制定、風(fēng)險(xiǎn)管理、資產(chǎn)定價(jià)和產(chǎn)品設(shè)計(jì)等工作的前提;诮鹑跁r(shí)間序列的多尺度、非線性和非平穩(wěn)和的多重特性,本文將集成經(jīng)驗(yàn)?zāi)B(tài)分解(EEMD)應(yīng)用到金融時(shí)間序列分析中。首先,利用EEMD建立多尺度集成預(yù)測(cè)模型。先用EEMD將原始序列分解并重構(gòu)成高頻、趨勢(shì)和低頻三個(gè)子序列;再結(jié)合Elman神經(jīng)網(wǎng)絡(luò)、支持向量機(jī)(SVM)和GM(1,1)對(duì)各部分進(jìn)行擬合;集成模型最后的預(yù)測(cè)值為各部分預(yù)測(cè)值之和。實(shí)證結(jié)果表明:該多尺度集成模型的預(yù)測(cè)精度要顯著高于傳統(tǒng)的單一模型和集成模型。其次,利用EEMD探究股市與匯市的波動(dòng)溢出效應(yīng)。利用EEMD將股價(jià)和匯率序列分解并重構(gòu)成高頻(短期波動(dòng)項(xiàng))、。低頻(中期波動(dòng)項(xiàng))和長(zhǎng)期趨勢(shì)三個(gè)波動(dòng)成分,從時(shí)域和頻域的雙重視角來(lái)探究股市與匯市的波動(dòng)溢出效應(yīng)。在不同的波動(dòng)層次上,分別結(jié)合Granger因果檢驗(yàn)和時(shí)變Copula探究波動(dòng)溢出的方向和強(qiáng)度。研究表明:短期波動(dòng)項(xiàng)對(duì)原始序列波動(dòng)的貢獻(xiàn)最大;不同時(shí)間尺度上的波動(dòng)溢出方向和強(qiáng)度是不同的。最后,利用EEMD去噪建立跨期套利策略。將價(jià)差信號(hào)看作趨勢(shì)和噪聲的疊加,用EEMD方法對(duì)價(jià)差序列進(jìn)行消噪,參考均值回復(fù)策略的原理,結(jié)合價(jià)差在趨勢(shì)周?chē)牟▌?dòng)狀況尋找套利機(jī)會(huì),相比于傳統(tǒng)的小波去噪方法,避免了小波基函數(shù)參數(shù)選擇的這一難題。
[Abstract]:In recent years, with the development of our financial market and the increasing variety of investment, the quantitative investment has gradually stepped into the people's vision, at the same time, the financial econometric analysis has been pushed to an unprecedented height. As the most common observation data in the financial market, time series is the real depiction of the market behavior. Through the quantitative analysis of the time series, the potential information in the market can be excavated, thus providing theoretical and technical support for the investment decision. It is a prerequisite for strategy making, risk management, asset pricing and product design. Based on the multi-scale, nonlinear and non-stationary characteristics of financial time series, this paper applies the integrated empirical mode decomposition (EMD) to the analysis of financial time series. Firstly, the multi-scale integrated prediction model is established by using EEMD. First, the original sequence is decomposed by EEMD to form three sub-sequences of high frequency, trend and low frequency; then, combined with Elman neural network, support vector machine (SVM) and GM-1) are fitted to each part, and the final prediction value of the integrated model is the sum of the predicted values of each part. The empirical results show that the prediction accuracy of the multi-scale integrated model is significantly higher than that of the traditional single model and integrated model. Secondly, using EEMD to explore the volatility spillover effect of stock market and foreign exchange market. Using EEMD to decompose stock price and exchange rate sequence to form high frequency (short term fluctuation term). From the perspective of time domain and frequency domain, the volatility spillover effects of stock market and foreign exchange market are studied from the perspective of low frequency (medium term fluctuation term) and long term trend. At different volatility levels, the direction and intensity of volatility spillover are explored with Granger causality test and time-varying Copula respectively. The results show that the short-term fluctuation term has the greatest contribution to the fluctuation of the original series, and the direction and intensity of the volatility spillover are different in different time scales. Finally, the cross-period arbitrage strategy is established by using EEMD denoising. The spread signal is regarded as the superposition of trend and noise, and the spread sequence is de-noised by EEMD method. Referring to the principle of mean recovery strategy and combining the fluctuation of price difference around the trend, the arbitrage opportunity is found, compared with the traditional wavelet de-noising method. The problem of parameter selection of wavelet basis function is avoided.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:F224;F832.51

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王瓊,劉國(guó)祥;金融時(shí)間序列的趨勢(shì)路徑的提取[J];南京師大學(xué)報(bào)(自然科學(xué)版);2002年02期

2 李曉玲,盧九江;高頻金融時(shí)間序列統(tǒng)計(jì)特征[J];統(tǒng)計(jì)與決策;2004年12期

3 陳興榮,向東進(jìn),阮曙芬;非線性金融時(shí)間序列的持久性測(cè)度[J];特區(qū)經(jīng)濟(jì);2005年10期

4 江孝感;王利;朱濤;;向量金融時(shí)間序列協(xié)整與協(xié)同持續(xù)關(guān)系——基于理論的思考[J];管理工程學(xué)報(bào);2008年01期

5 張學(xué)功;;金融時(shí)間序列中加性異常值的鑒別與校正[J];價(jià)值工程;2009年02期

6 張洪哲;;小波變換在金融時(shí)間序列中的應(yīng)用[J];生產(chǎn)力研究;2010年12期

7 張洪水;程剛;陸鳳彬;;高頻金融時(shí)間序列的模型化研究進(jìn)展回顧[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2011年03期

8 白e,

本文編號(hào):1856878


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/jinrongzhengquanlunwen/1856878.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶8287a***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
日韩不卡一区二区在线| 国产精品熟女在线视频| 亚洲精品国产第一区二区多人| 欧美日韩欧美国产另类| 草草视频福利在线观看| 国产精品欧美一区二区三区| 午夜免费精品视频在线看| 91亚洲国产日韩在线| 日本一品道在线免费观看| 国产一级精品色特级色国产| 超碰在线免费公开中国黄片| 字幕日本欧美一区二区| 久久香蕉综合网精品视频| 久久精品亚洲精品一区| 亚洲一区二区久久观看| 国产人妻精品区一区二区三区| 日本特黄特色大片免费观看| 熟女白浆精品一区二区| 91福利视频日本免费看看| 欧美一区二区不卡专区| 免费黄色一区二区三区| 人妻熟女欲求不满一区二区| 超碰在线播放国产精品| 黄片在线观看一区二区三区| 日韩精品一区二区毛片| 久久精品亚洲精品一区| 欧美国产日本免费不卡| 色婷婷人妻av毛片一区二区三区| 欧美成人黄色一区二区三区| 欧美亚洲国产日韩一区二区| 伊人色综合久久伊人婷婷| 日本男人女人干逼视频| 国产不卡视频一区在线| 国产精品免费视频专区| 亚洲三级视频在线观看免费| 欧美三级大黄片免费看| 国产精品国产亚洲看不卡| 中文人妻精品一区二区三区四区| 精产国品一二三区麻豆| 欧美日韩一区二区三区色拉拉| 欧美一级黄片免费视频|