基于改進小波去噪的支持向量機的股票型基金凈值預(yù)測研究
本文關(guān)鍵詞: 小波去噪 支持向量機 金融核 基金凈值 出處:《重慶師范大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:最近20年來,投資基金在全球金融市場中以令人矚目的速度迅猛發(fā)展。我們通過基金凈值可以看到基金的收益情況,并把它作為是否買基金以及買哪只基金的主要參考依據(jù)。因此,對基金凈值的預(yù)測具有非常重要的應(yīng)用價值。 支持向量機是基于統(tǒng)計學(xué)習(xí)理論的一種機器學(xué)習(xí)的方法。作為結(jié)果風(fēng)險最小化準(zhǔn)則的具體實現(xiàn),支持向量機方法具有全局最優(yōu),結(jié)構(gòu)簡單,推廣能力強等優(yōu)點,已成為近年來機器學(xué)習(xí)領(lǐng)域最有影響的成果之一。 然而現(xiàn)實世界中的數(shù)據(jù),通常具有數(shù)量大,,不完整,帶有噪音等特點。這些帶噪音的數(shù)據(jù)和數(shù)據(jù)的不完整性將會影響模型預(yù)測的準(zhǔn)確性。在進行基金凈值的預(yù)測中,我們最關(guān)心的是蘊藏在每日基金凈值中的凈值的漲跌趨勢,而不是那些人為的或者是市場波動造成的每日基金凈值的噪聲或者毛刺。 針對上述兩個問題,本文重點研究了基于小波去噪的支持向量機的基金凈值預(yù)測模型。本文主要工作包括以下幾個方面: (1)主要是利用小波去噪方法對數(shù)據(jù)進行預(yù)處理,提出改進的小波閾值去噪方法,并借助Matlab工具進行實證研究,表明改進的小波閾值去噪方法更優(yōu)。 (2)主要是對支持向量機的幾種典型的核函數(shù)的參數(shù)選擇進行了詳細的研究,并在多項式核和高斯徑向基核的基礎(chǔ)上,構(gòu)造了新的核函數(shù):金融核。并借助LibSVM工具包進行實證研究,表明新的核函數(shù)具有更好的優(yōu)越性。 (3)建立基于改進小波去噪的支持向量機的股票型基金凈值預(yù)測模型,對兩支基金進行實證分析,并與BP神經(jīng)網(wǎng)絡(luò)預(yù)測進行比較,表明建立的模型具有很好的預(yù)測效果。
[Abstract]:In the past 20 years, investment funds have developed rapidly in the global financial markets. We can see the return of funds through the net value of funds. It is regarded as the main reference of whether to buy the fund and which fund to buy. Therefore, the forecast of the net value of the fund has very important application value. Support vector machine (SVM) is a machine learning method based on statistical learning theory. As a concrete implementation of the result risk minimization criterion, support vector machine (SVM) is globally optimal and simple in structure. In recent years, it has become one of the most influential achievements in the field of machine learning. In the real world, however, data are often large and incomplete. Features such as noise. The incompleteness of these noisy data and data will affect the accuracy of the model forecast. What concerns us most is the upward and downward trend of net worth contained in the net daily fund, not the noise or burr caused by artificial or market volatility. Aiming at the above two problems, this paper focuses on the prediction model of fund net value based on wavelet denoising. The main work of this paper includes the following aspects: 1) the wavelet denoising method is mainly used to pre-process the data, and an improved wavelet threshold de-noising method is proposed, and an empirical study is carried out with the help of Matlab tool. It shows that the improved wavelet threshold denoising method is better. The parameter selection of several typical kernel functions of support vector machine is studied in detail, and based on polynomial kernel and Gao Si radial basis kernel. A new kernel function, financial kernel, is constructed, and an empirical study is carried out with the help of LibSVM Toolkit, which shows that the new kernel function has better advantages. 3) establish the forecasting model of equity fund net value based on improved wavelet denoising support vector machine, and analyze the two funds empirically, and compare them with BP neural network forecast. It shows that the model has good prediction effect.
【學(xué)位授予單位】:重慶師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:F830.91;TP18
【參考文獻】
相關(guān)期刊論文 前10條
1 劉雯;何斌;吳育華;;投資基金的市場規(guī)模與發(fā)展趨勢分析[J];中國農(nóng)機化;2007年01期
2 楊劍鑫;;中國基金的現(xiàn)狀與發(fā)展[J];金融經(jīng)濟;2006年08期
3 張擁華;曾凡仔;;基于混合核支持向量機的金融時間序列分析[J];計算機工程與應(yīng)用;2008年19期
4 曲文龍;樊廣Oz;楊炳儒;;基于支持向量機的復(fù)雜時間序列預(yù)測研究[J];計算機工程;2005年23期
5 張冰;孔銳;;一種支持向量機的組合核函數(shù)[J];計算機應(yīng)用;2007年01期
6 張學(xué)工;關(guān)于統(tǒng)計學(xué)習(xí)理論與支持向量機[J];自動化學(xué)報;2000年01期
7 閻威武,常俊林,邵惠鶴;基于滾動時間窗的最小二乘支持向量機回歸估計方法及仿真[J];上海交通大學(xué)學(xué)報;2004年04期
8 趙振全,蔣瑛琨,代麗,盧世春;我國證券市場結(jié)構(gòu)分析及優(yōu)化[J];數(shù)量經(jīng)濟技術(shù)經(jīng)濟研究;2001年06期
9 杜樹新,吳鐵軍;用于回歸估計的支持向量機方法[J];系統(tǒng)仿真學(xué)報;2003年11期
10 榮海娜;張葛祥;金煒東;;系統(tǒng)辨識中支持向量機核函數(shù)及其參數(shù)的研究[J];系統(tǒng)仿真學(xué)報;2006年11期
本文編號:1458405
本文鏈接:http://sikaile.net/jingjilunwen/jinrongzhengquanlunwen/1458405.html