擴(kuò)展粗糙集模型研究及其在供應(yīng)商選擇中的應(yīng)用
[Abstract]:Rough set theory, proposed by Polish mathematician Pawlak in 1982, is a mathematical tool for dealing with fuzzy and uncertain data after probability theory and fuzzy set theory. The characteristic of this theory is that it does not need any prior knowledge or additional information, and it has a good application prospect in the field of index selection and ranking selection in multi-attribute decision making problems. The classical rough set is mainly aimed at the complete information system. However, in real life, because of the error of data measurement, the limitation of data understanding or acquisition, etc., it is often faced with incomplete information system when acquiring knowledge. That is to say, there may be some unknown attribute values of some objects. Firstly, based on the fuzzy decision variable precision rough set model under complete information, According to the membership function, a rough set attribute reduction algorithm for multi-attribute decision making with incomplete information is presented, and the feasibility of the model is verified by an example. In addition, in order to solve the problem of sorting and optimization in multi-attribute decision making, most of the previous researches have shown that the default attributes can compensate each other, but in real life, there are some cases in which the attributes can not be fully compensated. In this paper, a hierarchical weight determination method based on rough set and an improved information entropy extended rough set sorting model are proposed in this paper, considering the integrity and equilibrium of the scheme. It can improve the accuracy of sorting results to a certain extent. Finally, the ranking model is applied to supplier selection, and the index system suitable for the supplier selection of chemical equipment parts is constructed. The application value of the model is illustrated by a practical example, and the evaluation values of the linear weighted model and the improved model are compared. The calculation results show that the improved model is more in line with the actual selection results of the enterprise, and proves that the method is scientific and effective.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:F274;F224
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 滕書華;周石琳;孫即祥;李智勇;;基于條件熵的不完備信息系統(tǒng)屬性約簡(jiǎn)算法[J];國(guó)防科技大學(xué)學(xué)報(bào);2010年01期
2 菅利榮;劉思峰;方志耕;黨耀國(guó);朱建軍;吳和成;姚天祥;;基于優(yōu)勢(shì)粗糙集的教學(xué)研究型大學(xué)學(xué)科建設(shè)績(jī)效評(píng)價(jià)[J];管理工程學(xué)報(bào);2007年03期
3 吳立云;楊玉中;;基于粗糙集-熵理論的綠色供應(yīng)商選擇模型研究[J];工業(yè)工程與管理;2011年02期
4 楊善林,劉業(yè)政,李亞飛;基于Rough Sets理論的證據(jù)獲取與合成方法[J];管理科學(xué)學(xué)報(bào);2005年05期
5 王國(guó)胤;Rough集理論在不完備信息系統(tǒng)中的擴(kuò)充[J];計(jì)算機(jī)研究與發(fā)展;2002年10期
6 徐偉華;張曉燕;張文修;;優(yōu)勢(shì)關(guān)系下不協(xié)調(diào)目標(biāo)信息系統(tǒng)的下近似約簡(jiǎn)[J];計(jì)算機(jī)工程與應(yīng)用;2009年16期
7 滕書華;魏榮華;孫即祥;譚志國(guó);胡清華;;基于不可區(qū)分度的啟發(fā)式快速完備約簡(jiǎn)算法[J];計(jì)算機(jī)科學(xué);2009年08期
8 魏大寬;黃兵;周獻(xiàn)中;;不完備模糊目標(biāo)信息系統(tǒng)粗集模型與知識(shí)約簡(jiǎn)[J];計(jì)算機(jī)工程;2006年08期
9 徐偉華;張曉燕;張文修;;優(yōu)勢(shì)關(guān)系下不協(xié)調(diào)目標(biāo)信息系統(tǒng)的上近似約簡(jiǎn)[J];計(jì)算機(jī)工程;2009年18期
10 陸秋琴;和濤;黃光球;;多重變精度粗糙集模型[J];計(jì)算機(jī)應(yīng)用;2011年06期
本文編號(hào):2386062
本文鏈接:http://sikaile.net/jingjilunwen/jingjiguanlilunwen/2386062.html