天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

非對稱金融資產(chǎn)波動預(yù)測與建模影響研究(塞拉利昂標準普爾500指數(shù)及匯率實證研究)

發(fā)布時間:2018-11-12 11:34
【摘要】:建模金融資產(chǎn)收益和回報并進行預(yù)測對于資本市場的決策者和參與者追求利潤最大化的目標和做出精準判決是至關(guān)重要的。盡管在相關(guān)的文獻中已經(jīng)出現(xiàn)了對金融資產(chǎn)收益率動態(tài)波動的相關(guān)的學(xué)術(shù)文章,但是建模和預(yù)測金融資產(chǎn)收益的動態(tài)波動性在金融數(shù)學(xué),金融計量經(jīng)濟學(xué),金融經(jīng)濟學(xué),應(yīng)用統(tǒng)計與經(jīng)濟增長中所能夠起到的關(guān)鍵作用時至至今,仍然是一個懸而未決的問題。因此,本論文詳細闡述并探討了關(guān)于標準普爾500股指日收益率和塞拉利昂月匯率收益的動態(tài)波動模型的建模和預(yù)測,這其中包括自回歸滑動平均模型,廣義自回歸條件異方差模型(GARCH), Taylor,Schwert廣義自回歸條件異方差模型(GARCH), Glosten, Jagannathan, Runkle GARCH模型及條件正態(tài)分布,t分布的非對稱ARCH模型。于此同時,此篇文章也詳細論述了由Dickey-Fuller, Phillip-Perron提出的單位根檢驗,誤差糾正模型。同時證明了在簡單序約束條件下,平穩(wěn)APARCH(p)模型的一致收斂性,強相合性和漸進正態(tài)性。同時也推導(dǎo)了APARCH模型解析得分表達式。結(jié)合極大似然估計推導(dǎo)了GARCH模型的相關(guān)性質(zhì)。將2002年1月1日至2012年至12月31日期間的日標準普爾500指數(shù)回報數(shù)據(jù),1991年1月1日至2013年12月31日,塞拉利昂月匯率收益數(shù)據(jù)對上述提及的模型進行擬合,結(jié)果表明使用重尾t分布的APARCH模型是最有效和最成功預(yù)測模型,能夠成功預(yù)測日股指回報序列。在重尾t分布下的GJR-GARCH模型能夠最有效的預(yù)測塞拉利昂月匯率收益率序。誤差修正的結(jié)果顯示,如果長期的均衡出現(xiàn)偏離,則可通過對日股票指數(shù)和月度匯率的不平衡性的調(diào)整,來達到恢復(fù)平衡的效果。最后,研究表明,文中給出的模型能夠成功建模日500股票指數(shù)和塞拉利昂月匯率波動。同時由于杠桿效應(yīng)的存在,導(dǎo)致了非對稱GARCH模型顯示出了非對稱的收益率序列。在非常態(tài)分布下,非對稱(GARCH)和GARCH模型能夠更好的擬合并提升整體的對條件方差的估計。鑒于股指和匯率波動的實際含義,此研究將對資本市場的決策者,投資人及行業(yè)從業(yè)研究人員在經(jīng)濟行業(yè)實踐中,所涌現(xiàn)出的風(fēng)險管控和外匯市場波動等領(lǐng)域起到至關(guān)重要的作用。
[Abstract]:Modeling and forecasting the returns and returns of financial assets is essential for capital market decision makers and participants to pursue the goal of maximizing profits and making accurate decisions. Although there have been relevant academic articles on the dynamic volatility of financial asset returns in the relevant literature, modeling and predicting the dynamic volatility of financial asset returns in financial mathematics, financial econometrics, financial economics, Application of statistics and economic growth can play a key role until now, is still an outstanding issue. Therefore, this paper discusses the modeling and forecasting of the dynamic volatility model of the daily yield of the S & P 500 stock index and the Sierra Leone monthly exchange rate return, which includes the autoregressive moving average model. Generalized autoregressive conditional heteroscedasticity model (GARCH), Taylor,Schwert generalized autoregressive conditional heteroscedasticity model (GARCH), Glosten, Jagannathan, Runkle GARCH model and asymmetric ARCH model with conditional normal distribution and t distribution. At the same time, this paper also discusses the unit root test and error correction model proposed by Dickey-Fuller, Phillip-Perron in detail. At the same time, the uniform convergence, strong consistency and asymptotic normality of stationary APARCH (p) model are proved under the condition of simple order constraint. At the same time, the analytic score expression of APARCH model is derived. The related properties of GARCH model are derived by using maximum likelihood estimation. Using the daily S & P 500 return data for the period from 1 January 2002 to 31 December 2012 and the Sierra Leone monthly exchange rate gains data from 1 January 1991 to 31 December 2013 to fit the model mentioned above, The results show that the APARCH model with heavy-tailed t distribution is the most effective and successful prediction model and can successfully predict the daily stock index return series. The GJR-GARCH model under the heavy-tailed t distribution can best predict the monthly exchange rate return order in Sierra Leone. The result of error correction shows that if the long-term equilibrium deviates, the effect of restoring equilibrium can be achieved by adjusting the imbalance between the Japanese stock index and the monthly exchange rate. Finally, it is shown that the proposed model can successfully model the daily 500 stock index and the Sierra Leone monthly exchange rate fluctuation. At the same time, because of the existence of leverage effect, the asymmetric GARCH model shows an asymmetric return sequence. Under the abnormal distribution, asymmetric (GARCH) and GARCH models can better estimate the conditional variance of the whole quasi combined lifting system. In view of the actual implications of stock index and exchange rate fluctuations, the study will apply to capital market decision makers, investors and industry researchers in the practice of the economic industry. Emerging risk management and foreign exchange market volatility and other areas play a vital role.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:F830;F224

【相似文獻】

相關(guān)期刊論文 前10條

1 Bai-min YU;;Two Efficient Parameterized Boundaries for Ve酓e峁's Asian Option Pricing PDE[J];Acta Mathematicae Applicatae Sinica(English Series);2012年04期

2 ;PRICING EUROPEAN OPTION IN A DOUBLE EXPONENTIAL JUMP-DIFFUSION MODEL WITH TWO MARKET STRUCTURE RISKS AND ITS COMPARISONS[J];Applied Mathematics:A Journal of Chinese Universities(Series B);2007年02期

3 ZHOU Pu;LU Fengbin;WANG Shouyang;;TESTING LINEAR AND NONLINEAR GRANGER CAUSALITY IN CSI300 FUTURES AND SPOT MARKETS BASED ON NEW CONCEPTS OF NONLINEAR POSITIVE/NEGATIVE SPILLOVER[J];Journal of Systems Science & Complexity;2014年04期

4 ;Forecasting China′s Stock Market Volatility Using Non-Linear GARCH Models[J];Journal of Systems Science and Systems Engineering;2000年04期

5 龐素琳;鄧飛其;王燕鳴;;A COMPARISON OF FORECASTING MODELS OF THE VOLATILITY IN SHENZHEN STOCK MARKET[J];Acta Mathematica Scientia;2007年01期

6 GONCALVES Carlos Pedro;;QUANTUM FINANCIAL ECONOMICS——RISK AND RETURNS[J];Journal of Systems Science & Complexity;2013年02期

7 胡耀忠;MULTI-DIMENSIONAL GEOMETRIC BROWNIANMOTIONS, ONSAGER-MACHLUP FUNCTIONS, AND APPLICATIONS TO MATHEMATICAL FINANCE[J];Acta Mathematica Scientia;2000年03期

8 ;Rise and Fall of the First Financial Futures Market in China: The Case of Chinese Government Bond Futures[J];China & World Economy;2009年02期

9 CHEN Xiu-fang;;GARCH-GED Model Based-AGA for Financial Risk Measure[J];科技視界;2013年24期

10 Tobias LIPP;Gr忮goire LOEPER;Olivier PIRONNEAU;;Mixing Monte-Carlo and Partial Differential Equations for Pricing Options[J];Chinese Annals of Mathematics(Series B);2013年02期

相關(guān)會議論文 前7條

1 ;The Research on the Stock Price Volatility of Chinese Growth Enterprise Market[A];Proceedings of the 2011 Chinese Control and Decision Conference(CCDC)[C];2011年

2 ;Stock Market Volatility and Earnings Management:A Regional Perspective[A];第五屆(2010)中國管理學(xué)年會——會計與財務(wù)分會場論文集[C];2010年

3 ;Crystal growth of CsB_3O_5 from NaF flux[A];第14屆全國晶體生長與材料學(xué)術(shù)會議論文集[C];2006年

4 ;Multiresolution Wavelet Analysis Based Volatility Character of High Frequency SIGNAL[A];Proceedings of the Second Conference on Fuzzy Information & Engineering[C];2005年

5 ;Systemic Jump in Chinese Stock Market[A];第八屆中國不確定系統(tǒng)年會論文集[C];2010年

6 Greg Clinch;Donald Stokes;;Audit Quality and Information Asymmetry between Traders[A];中國會計學(xué)會第八屆全國會計信息化年會論文集[C];2009年

7 應(yīng)益榮;宮模恒;;Overconfidence:Expansion of the DHS Model in Futures Market[A];第二屆中國智能計算大會論文集[C];2008年

相關(guān)博士學(xué)位論文 前3條

1 Milton Abdul Thorlie;非對稱金融資產(chǎn)波動預(yù)測與建模影響研究(塞拉利昂標準普爾500指數(shù)及匯率實證研究)[D];大連理工大學(xué);2015年

2 Muhammad Altaf;[D];中國科學(xué)技術(shù)大學(xué);2015年

3 邱天;金融動力學(xué)唯象分析和模型研究[D];浙江大學(xué);2006年

相關(guān)碩士學(xué)位論文 前3條

1 Nicola FERRARI;[D];復(fù)旦大學(xué);2009年

2 袁臻;波動率預(yù)測模型與比較[D];上海交通大學(xué);2013年

3 孔濤;現(xiàn)金股利,,投資者偏好及市場穩(wěn)定性[D];上海交通大學(xué);2012年



本文編號:2326993

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/jingjiguanlilunwen/2326993.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶d876c***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com