天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

房價(jià)微博情感分類研究

發(fā)布時(shí)間:2018-09-07 15:57
【摘要】:房價(jià)滿意度作為衡量社會發(fā)展的一個(gè)重要指標(biāo),正在引起社會的廣泛關(guān)注但是由于難以量化數(shù)據(jù)收集繁瑣時(shí)效性弱等困難,相關(guān)研究無法深入伴隨著互聯(lián)網(wǎng)技術(shù)的不斷進(jìn)步,在線討論平臺的快速發(fā)展壯大,如新浪微博主題論壇等,民眾利用這些新興渠道暢所欲言,在其中就包括與房價(jià)高度相關(guān)的大量言論信息這些信息背后就是民眾對于房價(jià)的情感態(tài)度,是民眾對于房價(jià)滿意度的一種碎片式表達(dá),這些碎片化的信息中就包含著民眾對于房價(jià)的滿意程度房價(jià)微博情感分類,是指利用數(shù)據(jù)挖掘的方法,對大數(shù)量級的房價(jià)微博進(jìn)行情感傾向信息識別,借此為房價(jià)滿意度研究提供支持 本文以北京房價(jià)微博作為直接研究對象首先,采集了以北京房價(jià)為關(guān)鍵字的,2011年1月到2014年1月這個(gè)時(shí)間段內(nèi)的所有微博數(shù)據(jù),其中有效數(shù)據(jù)共計(jì)59957條然后,基于N-Gram語言模型構(gòu)建情感傾向分類器通過不斷優(yōu)化訓(xùn)練集使分類準(zhǔn)確率達(dá)到95%以上最后,在準(zhǔn)確率達(dá)到要求的前提下,,挖掘出蘊(yùn)含在房價(jià)微博中民眾對于房價(jià)的情感傾向 依據(jù)本文前兩章所取得的成果,對民眾滿意度與房價(jià)之間的關(guān)系進(jìn)行實(shí)證分析首先,利用基于N-Gram語言模型的情感分類器對每月的北京房價(jià)微博數(shù)據(jù)進(jìn)行情感傾向識別,計(jì)算情緒得分,借此量化民眾對于房價(jià)的滿意程度然后,聯(lián)系北京市每月的新建住宅銷售價(jià)格指數(shù)這一相對值住宅平均銷售價(jià)格這一絕對值,以及推算出的每月住宅銷售價(jià)格增長率這三個(gè)變量進(jìn)行統(tǒng)計(jì)分析最終,統(tǒng)計(jì)分析結(jié)果表明民眾對于房價(jià)的滿意程度受到房價(jià)絕對值和相對值的顯著影響,且房價(jià)相對值對其影響程度更強(qiáng),相比于房價(jià)絕對值進(jìn)而,聯(lián)系所查閱文獻(xiàn)與相關(guān)理論進(jìn)行模型結(jié)果的解釋最后,本研究利用所取得的成果,聯(lián)系房地產(chǎn)實(shí)踐領(lǐng)域,給予提高房地產(chǎn)領(lǐng)域民眾滿意度的建議本研究為中文文本情感傾向自動識別在房地產(chǎn)領(lǐng)域進(jìn)行了新的探索,為政府制定公共政策提供數(shù)據(jù)支持和理論基礎(chǔ),也為學(xué)者繼續(xù)研究文本情感傾向提供很好的思路
[Abstract]:As an important index to measure social development, house price satisfaction is attracting wide attention of the society. However, due to the difficulty of quantifying data collection, such difficulties as tedious and weak timeliness, the related research can not go deep with the continuous progress of Internet technology. With the rapid development of online discussion platforms, such as the Sina Weibo theme Forum, people use these new channels to speak freely. Among them is a large amount of speech information that is highly relevant to house prices. Behind this information is the public's emotional attitude towards housing prices, a fragmented expression of people's satisfaction with housing prices. These pieces of information contain the people's satisfaction with the housing prices, Weibo's emotional classification of housing prices, which refers to the use of data mining methods to identify the affective tendency information of the house prices in the order of magnitude, Weibo. In order to provide support for the research on the degree of house price satisfaction, this paper takes Weibo as the direct research object. Firstly, we collect all Weibo data in the period from January 2011 to January 2014, which is based on the key word of housing price in Beijing. There are 59957 valid data, and then, based on the N-Gram language model, the classification accuracy of emotion tendency classifier is over 95% by continuously optimizing the training set. Excavating the emotion tendency of the people to the house price in Weibo of housing price, according to the results obtained in the first two chapters of this paper, the relationship between the satisfaction of the people and the house price is analyzed empirically, first of all, The emotion classifier based on N-Gram language model is used to identify the emotion tendency of Weibo data of housing price in Beijing every month, to calculate the emotion score, so as to quantify the people's satisfaction with the house price, and then, Connecting with the absolute value of the monthly sales price index of newly built residential buildings in Beijing, the absolute value of the average residential sales price, and the calculated monthly residential sales price growth rate, the three variables are statistically analyzed. The results of statistical analysis show that the satisfaction of the public with the house price is significantly affected by the absolute and relative value of the house price, and the relative value of the house price has a stronger impact on it, compared with the absolute value of the house price, With reference to literature and related theories to explain the results of the model finally, this study uses the results obtained, the real estate practice field, Suggestions for improving the satisfaction of people in Real Estate this study provides a new exploration for automatic identification of emotional tendencies in Chinese texts and provides data support and theoretical basis for the government to formulate public policies. It also provides a good way for scholars to continue to study the emotional tendency of text.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:G206;F299.23

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 汪志圣;李龍澍;;Web文檔分類方法的比較與分析[J];滁州學(xué)院學(xué)報(bào);2007年06期

2 李艷玲;戴冠中;覃森;;快速的文本傾向性分類方法(英文)[J];電子科技大學(xué)學(xué)報(bào);2007年06期

3 劉洪;王鳳嬌;;微博用戶信息傳播的心理需求研究[J];傳播與版權(quán);2013年01期

4 胡熠;陸汝占;李學(xué)寧;段建勇;陳玉泉;;基于語言建模的文本情感分類研究[J];計(jì)算機(jī)研究與發(fā)展;2007年09期

5 李寧寧,張春光;社會滿意度及其結(jié)構(gòu)要素[J];江蘇社會科學(xué);2001年04期

6 柴玉梅;熊德蘭;昝紅英;;Web文本褒貶傾向性分類研究[J];計(jì)算機(jī)工程;2006年17期

7 王學(xué)靜;;高房價(jià)影響社會心理[J];科技與企業(yè);2010年04期

8 毛偉;徐蔚然;郭軍;;基于n-gram語言模型和鏈狀樸素貝葉斯分類器的中文文本分類系統(tǒng)[J];中文信息學(xué)報(bào);2006年03期

9 姚天f ;婁德成;;漢語語句主題語義傾向分析方法的研究[J];中文信息學(xué)報(bào);2007年05期

10 徐軍;丁宇新;王曉龍;;使用機(jī)器學(xué)習(xí)方法進(jìn)行新聞的情感自動分類[J];中文信息學(xué)報(bào);2007年06期



本文編號:2228718

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/jingjiguanlilunwen/2228718.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e5914***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
亚洲综合激情另类专区老铁性| 人妻少妇系列中文字幕| 麻豆视频传媒入口在线看| 日韩在线欧美一区二区| 亚洲国产精品久久综合网| 日韩精品在线观看完整版| 一区二区三区日韩中文| 亚洲日本韩国一区二区三区| 国产亚洲精品香蕉视频播放| 超薄丝袜足一区二区三区| 九九热最新视频免费观看| 日韩中文字幕视频在线高清版 | 日韩熟妇人妻一区二区三区| 欧美又大又黄刺激视频| 日韩不卡一区二区在线| 国产精品伦一区二区三区在线| 亚洲欧美日本国产有色| 日本人妻熟女一区二区三区| 色婷婷久久五月中文字幕| 富婆又大又白又丰满又紧又硬| 中国少妇精品偷拍视频| 日韩午夜福利高清在线观看| 日韩一级免费中文字幕视频| 加勒比东京热拍拍一区二区| 综合久综合久综合久久| 乱女午夜精品一区二区三区| 欧美大粗爽一区二区三区| 99久久国产综合精品二区| 精品欧美在线观看国产| 亚洲国产中文字幕在线观看| 国产又粗又猛又爽又黄| 精品人妻精品一区二区三区| 激情五月综五月综合网| 肥白女人日韩中文视频| 久久精品一区二区少妇| 国产精品国产亚洲看不卡| 国产日产欧美精品大秀| 国产午夜精品久久福利| 亚洲一区二区三区福利视频| 久久国产亚洲精品赲碰热| 好骚国产99在线中文|