天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于遺傳神經(jīng)網(wǎng)絡(luò)的天津市公共機構(gòu)能耗數(shù)據(jù)分析模型研究

發(fā)布時間:2018-06-02 14:03

  本文選題:遺傳算法 + BP神經(jīng)網(wǎng)絡(luò)。 參考:《天津理工大學(xué)》2014年碩士論文


【摘要】:隨著我國經(jīng)濟社會的快速發(fā)展,社會的能耗問題日益突出,公共機構(gòu)作為社會能源消耗的重要群體,其能耗的分析與預(yù)測尤其重要。公共機構(gòu)能耗影響因素眾多,除去便于統(tǒng)計的人數(shù)、建筑面積、車輛數(shù)目等因素還包括能耗管理制度、用能方式、財政撥款等其他非確定因素給能耗分析帶來一定難度。本文依據(jù)天津市公共機構(gòu)能耗統(tǒng)計平臺歷史數(shù)據(jù)對天津市公共機構(gòu)能耗進行了分析和預(yù)測,主要工作有以下幾個方面。 1)對天津市公共機構(gòu)概況進行分析,從公共機構(gòu)數(shù)量、組成等方面得出近年來的變化趨勢。分析了公共機構(gòu)能耗種類及支出類型,,得出公共機構(gòu)能耗的特點:非營利性、缺少控制動因和相對穩(wěn)定性。從影響公共機構(gòu)能耗的因素包括:建筑面積、公用車輛數(shù)量、用能人數(shù)、公共機構(gòu)類型等方面對天津市2005至2010年公共機構(gòu)的能耗數(shù)據(jù)進行了詳細描述。公共機構(gòu)總能耗趨于穩(wěn)定變化不大,人均能耗逐年降低。 2)確定影響公共機構(gòu)能耗的影響因素。影響公共機構(gòu)能耗的因素眾多,不僅包括建筑類型、暖通結(jié)構(gòu)、照明系統(tǒng)等硬件設(shè)施還包括非確定性因素。本文根據(jù)獲得的能耗數(shù)據(jù),運用灰色關(guān)聯(lián)理論對現(xiàn)有能耗指標進行灰色關(guān)聯(lián)分析,得出影響公共機構(gòu)電耗的關(guān)鍵指標有:建筑面積、用能人數(shù)、編制人數(shù)和機構(gòu)類型。 3)建立基于遺傳神經(jīng)網(wǎng)絡(luò)的公共機構(gòu)能耗分析模型。公共機構(gòu)能耗組成具有高度的非線性特點,而人工神經(jīng)網(wǎng)絡(luò)具有很好的非線性、自學(xué)習(xí)與自適應(yīng)能力,并且適用于處理多變量系統(tǒng)和很好的容錯能力,選取BP神經(jīng)網(wǎng)絡(luò)進行能耗的預(yù)測。BP神經(jīng)網(wǎng)絡(luò)自身的缺陷,初始權(quán)值選擇的盲目性會導(dǎo)致網(wǎng)絡(luò)陷入局部最小,而基于遺傳學(xué)與自然選擇的遺傳算法擁有全局尋優(yōu)的能力,選取遺傳算法對BP神經(jīng)網(wǎng)絡(luò)進行優(yōu)化。通過遺傳算法初始種群的生成,選擇、交叉和變異操作確定神經(jīng)網(wǎng)絡(luò)的初始權(quán)值和閾值,并訓(xùn)練了網(wǎng)絡(luò)結(jié)構(gòu),克服了BP神經(jīng)網(wǎng)絡(luò)的缺陷。 4)運用MATLAB語言完成能耗預(yù)測模型的仿真,選取100組天津市公共機構(gòu)的能耗統(tǒng)計數(shù)據(jù)對遺傳神經(jīng)網(wǎng)絡(luò)進行訓(xùn)練,驗證模型的有效性,并將模型與標準BP神經(jīng)網(wǎng)絡(luò)進行比較,得出該模型優(yōu)于標準BP神經(jīng)網(wǎng)絡(luò),并運用模型對5家公共機構(gòu)的能耗進行了預(yù)測。
[Abstract]:With the rapid development of our country's economy and society, the problem of energy consumption is becoming more and more prominent. As an important group of social energy consumption, it is very important to analyze and predict the energy consumption of public institutions. There are many factors affecting energy consumption in public institutions. Besides the factors such as the number of people, the building area, the number of vehicles and so on, such factors as energy consumption management system, energy use mode, financial allocation and other uncertain factors bring some difficulties to the energy consumption analysis. Based on the historical data of Tianjin public institution energy consumption statistical platform, this paper analyzes and forecasts the energy consumption of public institutions in Tianjin. The main work is as follows. 1) the general situation of Tianjin public institutions is analyzed, and the change trend in recent years is obtained from the number and composition of public institutions. The types of energy consumption and the types of expenditure of public institutions are analyzed. The characteristics of energy consumption of public institutions are as follows: non-profit, lack of control motivation and relative stability. The energy consumption data of public institutions in Tianjin from 2005 to 2010 are described in detail from the following factors: the building area, the number of public vehicles, the number of energy users and the types of public institutions. The total energy consumption of public institutions tends to change steadily, and the per capita energy consumption decreases year by year. 2) determine the factors that affect the energy consumption of public institutions. There are many factors that affect the energy consumption of public institutions, including not only the types of buildings, HVAC structures, lighting systems and other hardware facilities, but also non-deterministic factors. According to the energy consumption data obtained, the grey correlation analysis of the existing energy consumption index is carried out by using the grey correlation theory, and the key indexes affecting the power consumption of public institutions are obtained: building area, number of energy users, number of persons compiled and type of mechanism. 3) the energy consumption analysis model of public institutions based on genetic neural network is established. The energy consumption composition of common mechanism is highly nonlinear, while the artificial neural network has good nonlinear, self-learning and adaptive ability, and is suitable for multivariable systems and fault-tolerant. Selecting BP neural network to predict energy consumption. The defects of BP neural network itself, the blindness of initial weight selection will lead to the local minimum of the network, and the genetic algorithm based on genetics and natural selection has the ability of global optimization. Genetic algorithm is selected to optimize BP neural network. The initial weights and thresholds of neural networks are determined by genetic algorithm (GA) initial population generation, selection, crossover and mutation operations, and the network structure is trained to overcome the defects of BP neural networks. 4) using MATLAB language to simulate the energy consumption prediction model, 100 groups of energy consumption statistics of Tianjin public institutions are selected to train the genetic neural network to verify the validity of the model, and the model is compared with the standard BP neural network. It is concluded that the model is superior to the standard BP neural network, and the energy consumption of five public institutions is predicted by using the model.
【學(xué)位授予單位】:天津理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TP183;F206

【參考文獻】

相關(guān)期刊論文 前8條

1 孫曉光,傅云義,胡賡祥,王國棟,劉相華;遺傳算法對熱軋帶鋼精軋機組負荷分配BP網(wǎng)絡(luò)參數(shù)的優(yōu)化[J];鋼鐵;1998年07期

2 張碩鵬;李銳;;辦公類建筑能耗影響因素與節(jié)能潛力[J];北京建筑工程學(xué)院學(xué)報;2013年01期

3 陳海波;王凡;;基于能耗分項計量數(shù)據(jù)的大型公建節(jié)能診斷方法及典型案例[J];建筑科學(xué);2011年04期

4 張瑞滋;呂挨梁;程繼東;;鄂爾多斯市公共機構(gòu)能耗指標相關(guān)性分析[J];內(nèi)蒙古科技與經(jīng)濟;2011年03期

5 王一凡;趙歡;王培紅;;能耗管理數(shù)據(jù)庫系統(tǒng)的開發(fā)與利用[J];上海節(jié)能;2008年09期

6 陳程;趙歡;王培紅;;公共機構(gòu)建筑能耗指標的多因素影響評價[J];上海節(jié)能;2009年02期

7 劉丹丹;陳啟軍;森一之;木田幸夫;;基于數(shù)據(jù)的建筑能耗分析與建模[J];同濟大學(xué)學(xué)報(自然科學(xué)版);2010年12期

8 李敏強,徐博藝,寇紀淞;遺傳算法與神經(jīng)網(wǎng)絡(luò)的結(jié)合[J];系統(tǒng)工程理論與實踐;1999年02期



本文編號:1969026

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/jingjiguanlilunwen/1969026.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶5cbfc***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
深夜福利欲求不满的人妻| 高潮少妇高潮久久精品99| 亚洲欧美国产精品一区二区| 欧美综合色婷婷欧美激情| 色好吊视频这里只有精| 东京热加勒比一区二区| 国产亚洲午夜高清国产拍精品| 中文字幕乱码一区二区三区四区 | 国产精品国三级国产专不卡| 久久久精品区二区三区| 久久一区内射污污内射亚洲| 国产亚洲二区精品美女久久| 色综合视频一区二区观看| 国产老女人性生活视频| 亚洲国产色婷婷久久精品| 亚洲国产精品久久综合网| 国产午夜在线精品视频| 麻豆91成人国产在线观看| 亚洲内射人妻一区二区| 日本女优一区二区三区免费| 亚洲中文字幕有码在线观看| 好吊一区二区三区在线看| 欧美色欧美亚洲日在线| 福利视频一区二区在线| 欧美亚洲美女资源国产| 亚洲午夜精品视频观看| 又色又爽又黄的三级视频| 日韩精品一级片免费看| 一区二区三区国产日韩| 国产精品一区二区视频| 久久99夜色精品噜噜亚洲av| 护士又紧又深又湿又爽的视频| 亚洲欧美日韩网友自拍| 色哟哟国产精品免费视频| 亚洲国产成人久久一区二区三区| 99久久精品免费精品国产| 欧美视频在线观看一区| 日本欧美一区二区三区高清| 亚洲国产一区精品一区二区三区色 | 免费福利午夜在线观看| 成人精品一区二区三区综合 |