基于t-Copula下信用資產(chǎn)組合的綜合風(fēng)險(xiǎn)度量及實(shí)證研究
本文關(guān)鍵詞: 結(jié)構(gòu)模型 Copula函數(shù) 異質(zhì)資產(chǎn)組合 重要抽樣技術(shù) ES 出處:《浙江財(cái)經(jīng)大學(xué)》2014年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:對(duì)信用資產(chǎn)組合的風(fēng)險(xiǎn)度量研究一直以來(lái)都是學(xué)者關(guān)注的重點(diǎn),基本模型主要分為結(jié)構(gòu)模型、簡(jiǎn)約模型。這些模型的最終意圖都是發(fā)展出一套科學(xué)系統(tǒng)的體系來(lái)度量風(fēng)險(xiǎn),以求合理定價(jià)或防范未來(lái)可能發(fā)生的損失。而對(duì)于組合的相關(guān)性結(jié)構(gòu)以及組合風(fēng)險(xiǎn)計(jì)算的復(fù)雜性卻鮮有研究,直到2008年金融危機(jī)的爆發(fā),由于尾部風(fēng)險(xiǎn)的忽略而導(dǎo)致的違約事件急劇增加才引起了學(xué)者們對(duì)于組合風(fēng)險(xiǎn)的相關(guān)結(jié)構(gòu)的研究。為此,本文研究一種能夠刻畫(huà)異質(zhì)性信用資產(chǎn)組合尾部相關(guān)性的有效度量風(fēng)險(xiǎn)的方法,并對(duì)上市股票相關(guān)數(shù)據(jù)做實(shí)證分析。 首先,本文概括性介紹了模型的理論基礎(chǔ)。主要介紹了結(jié)構(gòu)模型的定義,闡述結(jié)構(gòu)模型的基本思想和推導(dǎo)的相關(guān)衍生模型。同時(shí)詳細(xì)闡述了組合相關(guān)性結(jié)構(gòu)選取所采用的Copula系函數(shù)的定義、類(lèi)別、對(duì)應(yīng)參數(shù)估計(jì)方式以及所推導(dǎo)的各類(lèi)相關(guān)系數(shù)定義公式。 其次,本文針對(duì)組合的相關(guān)性結(jié)構(gòu)進(jìn)行了詳細(xì)的研究。針對(duì)傳統(tǒng)的組合之間采用正態(tài)Copula模型構(gòu)建相關(guān)性,本文采用了t-Copula模型來(lái)構(gòu)建并考慮了組合之間的尾部相關(guān)關(guān)系,以更好準(zhǔn)確的測(cè)量風(fēng)險(xiǎn)值。與此同時(shí),本文將資產(chǎn)組合同質(zhì)的限制擴(kuò)展到了異質(zhì)組合的條件之下,刻畫(huà)組合之間的非線性相關(guān)關(guān)系,其所得結(jié)果更加貼近現(xiàn)實(shí)。 然后,本文研究了Copula模型下重要抽樣技術(shù)。普通蒙特卡羅模擬在組合樣本數(shù)量急劇增加下模擬時(shí)間將會(huì)大大延長(zhǎng),,國(guó)內(nèi)外對(duì)于統(tǒng)計(jì)學(xué)中的重要抽樣技術(shù)的研究較多,而應(yīng)用于組合風(fēng)險(xiǎn)中的研究卻較少,尤其是基于Copula函數(shù)的基礎(chǔ)之上的相關(guān)研究。本文介紹了正態(tài)Copula下組合風(fēng)險(xiǎn)值計(jì)算方法,在此基礎(chǔ)上研究了t-Copula下重要抽樣技術(shù)的風(fēng)險(xiǎn)值計(jì)算公式。對(duì)于傳統(tǒng)中的重要抽樣技術(shù)均值漂移項(xiàng)所采用的高斯牛頓法,本文引入了同時(shí)兼有梯度法和牛頓法更加智能的Levenberg-Marquardt算法。通過(guò)數(shù)值模擬比較了正態(tài)Copula和t-Copula兩模型的重要抽樣下的蒙特卡羅模擬的有效性,發(fā)現(xiàn)重要抽樣技術(shù)的確能更加快速有效的測(cè)量風(fēng)險(xiǎn)值。 最后,本文選取上交所中房地產(chǎn)、零售業(yè)、金融保險(xiǎn)業(yè)的上市股票相關(guān)數(shù)據(jù)做實(shí)證分析。通過(guò)Black-Scholes Merton模型的求解得到了結(jié)構(gòu)模型所需要的每支股票的時(shí)刻公司資產(chǎn)價(jià)值以及標(biāo)準(zhǔn)收益率,通過(guò)核密度估計(jì)得到每支股票的邊際分布。利用t-Copula系函數(shù)以及非線性估計(jì)我們分別得到了組合的相關(guān)結(jié)構(gòu)以及異質(zhì)資產(chǎn)組合的各因子系數(shù),進(jìn)而得到了組合的整體違約概率。結(jié)合重要抽樣技術(shù),我們計(jì)算得到了組合的風(fēng)險(xiǎn)VaR值和ES值,結(jié)果表明重要抽樣技術(shù)在保證精確度的前提下的確減少了抽樣的方差,同時(shí)引入ES值可以更好的進(jìn)行風(fēng)險(xiǎn)監(jiān)管。 綜上所述,本文考慮異質(zhì)性組合的非線性相關(guān)關(guān)系,通過(guò)t-Copula系函數(shù)構(gòu)造組合之間的相關(guān)關(guān)系能更準(zhǔn)確的刻畫(huà)組合的違約概率,同時(shí)結(jié)合重要抽樣技術(shù)可以更加有效的測(cè)算組合的風(fēng)險(xiǎn)VaR和ES值,為極端事件的研究以及投資者配置經(jīng)濟(jì)資本和監(jiān)管者進(jìn)行風(fēng)險(xiǎn)監(jiān)管提供了依據(jù)。
[Abstract]:The research on the risk measurement of the portfolio of credit assets has always been the focus of scholars ' attention . The basic model is mainly divided into structural model and simplified model . The final intention of these models is to develop a system of scientific system to measure the risk , so as to reasonably price or guard against possible losses in the future . Firstly , the theory basis of the model is introduced in this paper . The definition of the structural model is introduced , the basic idea of the structural model and the related derivative model are described . At the same time , the definition , the category , the corresponding parameter estimation method and the deduced formula of the correlation coefficient are described in detail . Secondly , this paper studies the correlation structure of the combination . In this paper , we use the t - Copula model to construct the correlation . In the meantime , we use the t - Copula model to construct and take into account the tail correlation between the combinations to better measure the risk value . At the same time , this paper extends the restriction of the homogeneity of the portfolio to the non - linear correlation between the heterogeneous combination , and the result is closer to the reality . In this paper , we have studied the important sampling technique under the Copula model . The simulation time will be greatly prolonged under the sharp increase of the number of combined samples , but the research on the important sampling technique in the statistics is less , especially on the basis of Copula function . The paper introduces the Levenberg - Marquardt algorithm which is more intelligent than Newton method . Finally , this paper analyzes the relevant data of the listed stock of real estate , retail and financial insurance in Shanghai Stock Exchange . By using the Black - Black Merton model , we obtain the asset value and standard rate of return of each stock . By using t - Copula system function and nonlinear estimation we get the combined risk VaR and ES value respectively . The results show that the important sampling technique can reduce the variance of sample by using t - Copula system function and nonlinear estimation . The results show that the important sampling technique can reduce the variance of sample under the premise of guaranteeing accuracy , while introducing ES value can better carry out risk supervision . In conclusion , this paper considers the non - linear correlation of heterogeneous combination , the correlation between t - Copula system function is more accurate , and the combination risk VaR and ES value can be measured more effectively by combining the important sampling technique , which provides the basis for the research of extreme events and the risk supervision of investors ' allocation of economic capital and regulators .
【學(xué)位授予單位】:浙江財(cái)經(jīng)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:F224;F830.91
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫連友,胡海鷗;宏觀經(jīng)濟(jì)波動(dòng)與信用風(fēng)險(xiǎn):結(jié)構(gòu)模型[J];財(cái)經(jīng)理論與實(shí)踐;2005年01期
2 陳學(xué)華,楊輝耀;股市風(fēng)險(xiǎn)VaR與ES的動(dòng)態(tài)度量與分析[J];系統(tǒng)工程;2004年01期
3 張玲,楊貞柿,陳收;KMV模型在上市公司信用風(fēng)險(xiǎn)評(píng)價(jià)中的應(yīng)用研究[J];系統(tǒng)工程;2004年11期
4 馬勇;張衛(wèi)國(guó);許文坤;姜茜婭;;債券組合信用風(fēng)險(xiǎn)模型及實(shí)證研究[J];系統(tǒng)工程;2012年03期
5 陳榮達(dá);馬慶國(guó);孫元;;基于匯率回報(bào)厚尾性的外匯期權(quán)組合非線性VaR模型[J];管理工程學(xué)報(bào);2009年03期
6 吳慶曉;劉海龍;景平;;商業(yè)銀行集成風(fēng)險(xiǎn)度量方法研究[J];工業(yè)工程與管理;2011年04期
7 任仙玲;張世英;;基于核估計(jì)及多元阿基米德Copula的投資組合風(fēng)險(xiǎn)分析[J];管理科學(xué);2007年05期
8 汪劉根;;無(wú)違約風(fēng)險(xiǎn)抵押貸款定價(jià)研究[J];科技信息;2006年S5期
9 龔樸;鄧洋;胡祖輝;;銀行信用組合風(fēng)險(xiǎn)多成分重要性抽樣算法研究[J];管理科學(xué)學(xué)報(bào);2012年11期
10 劉沛欣;田軍;周勇;;基于VaR和ES調(diào)整的Sharpe比率及在基金評(píng)價(jià)中的實(shí)證研究[J];數(shù)理統(tǒng)計(jì)與管理;2012年04期
本文編號(hào):1520767
本文鏈接:http://sikaile.net/jingjilunwen/jingjiguanlilunwen/1520767.html