插入式垂直軸渦輪光纖流量傳感檢測系統(tǒng)研究
本文選題:流量檢測 + 大管徑管道 ; 參考:《東北電力大學(xué)》2017年碩士論文
【摘要】:流量檢測在工業(yè)生產(chǎn)、科學(xué)實驗以及經(jīng)濟(jì)核算中占有重要地位,是能源計量的重要組成部分。目前,大管徑管道流量檢測非常廣泛,然而大多數(shù)流量計的安裝需要截斷管道,很多時候?qū)I(yè)生產(chǎn)造成不便。傳統(tǒng)的插入式光纖流量計不僅可以實現(xiàn)不斷管拆裝,方便大管徑管道的流量檢測,還具有適用性強(qiáng)、抗干擾能力強(qiáng)等優(yōu)點。但是,傳統(tǒng)的設(shè)計將光纖探頭置于管道內(nèi)部,光纖檢測對被測流體的清潔度要求較高,存在被測流體性質(zhì)影響流量檢測精度的問題。本文設(shè)計了一種插入式垂直軸渦輪光纖流量傳感檢測系統(tǒng),改進(jìn)了渦輪機(jī)構(gòu)和反射式強(qiáng)度調(diào)制型光纖傳感器(RIM-FOS),將光信號檢測單元設(shè)計在管道上方,避免了光信號與流體的直接接觸,解決了傳統(tǒng)的插入式光纖流量計檢測精度受流體清潔程度影響的問題。首先,本文通過UG軟件建立管道及渦輪機(jī)構(gòu)的三維模型,并設(shè)計了兩種垂直軸渦輪。將兩種模型導(dǎo)入ANSYS進(jìn)行流體仿真,對比兩種渦輪的仿真結(jié)果,根據(jù)仿真結(jié)果確定了一種更優(yōu)化的渦輪機(jī)構(gòu),同時得到渦輪仿真系數(shù)k。通過CAXA軟件繪制渦輪機(jī)構(gòu)的工程圖紙并進(jìn)行實體加工。其次,通過MATLAB對RIM-FOS的光強(qiáng)調(diào)制函數(shù)仿真,得到光纖的實際參數(shù)參考值。采用光纖放大器作為RIM-FOS的光源裝置及探測器,同軸光纖作為光纖探頭。光信號由光纖放大器的光源裝置發(fā)出經(jīng)輪軸端面反射后由光纖放大器中的探測器接收,接收的光信號經(jīng)光電轉(zhuǎn)換后由ARM的A/D轉(zhuǎn)換模塊采集電壓信號。再次,電壓信號經(jīng)處理后由RS232串口發(fā)往上位機(jī)PC,由上位機(jī)監(jiān)控平臺顯示電壓與轉(zhuǎn)速、流速與流量等曲線或參數(shù)。最后,搭建實驗臺,驗證流量檢測系統(tǒng)的可行性。實驗結(jié)果證明,本系統(tǒng)渦輪機(jī)構(gòu)設(shè)計合理,渦輪旋轉(zhuǎn)均勻穩(wěn)定,可測量0.122~1.203m/s流速的流體流量。反射光纖檢測轉(zhuǎn)速精度較高,最高可識別336.13r/min的轉(zhuǎn)速。同時能夠在上位機(jī)實時顯示結(jié)果曲線,有良好的穩(wěn)定性。結(jié)論部分對本系統(tǒng)的優(yōu)勢、缺點以及未來的改進(jìn)方向做了分析說明。
[Abstract]:Flow detection plays an important role in industrial production, scientific experiments and economic accounting, and is an important part of energy measurement. At present, the flow detection of large diameter pipeline is very extensive. However, most of the Flowmeter installation needs to cut off the pipeline, which often causes inconvenience to industrial production. The traditional fiber-optic Flowmeter not only can realize the continuous tube disassembly and assembly, but also has the advantages of strong applicability and strong anti-interference ability. However, the traditional design puts the optical fiber probe inside the pipeline, and the cleanliness of the fluid under test is very high in the optical fiber detection, and there is the problem that the nature of the measured fluid affects the accuracy of the flow detection. In this paper, an optical fiber flow sensor system with inserted vertical axis turbine is designed. The turbine mechanism and the reflective intensity modulated fiber optic sensor (RIM-FOS) are improved. The optical signal detection unit is designed over the pipeline. The direct contact between the optical signal and the fluid is avoided, and the problem that the detection accuracy of the traditional fiber-optic Flowmeter is affected by the cleanliness of the fluid is solved. Firstly, the 3D model of pipeline and turbine mechanism is built by UG software, and two vertical axis turbines are designed. The two models are imported into ANSYS for fluid simulation, and the simulation results of the two kinds of turbines are compared. According to the simulation results, a more optimized turbine mechanism is determined, and the turbine simulation coefficient k. is obtained at the same time. Draw the engineering drawing of the turbine mechanism by CAXA software and carry on the solid processing. Secondly, the light intensity modulation function of RIM-FOS is simulated by MATLAB, and the reference value of optical fiber parameters is obtained. The optical fiber amplifier is used as the light source and detector of RIM-FOS, and the coaxial fiber is used as the optical fiber probe. The optical signal is sent out by the light source device of the fiber amplifier and then received by the detector in the optical fiber amplifier after reflected by the end surface of the wheel axis. The received optical signal is collected by the arm's A / D conversion module after photoelectric conversion. Thirdly, the voltage signal is sent from RS232 serial port to PC, and the monitoring platform displays the curves or parameters, such as voltage and speed, velocity and flow rate, etc. Finally, the experiment platform is built to verify the feasibility of the flow detection system. The experimental results show that the turbine mechanism of the system is reasonable, the turbine rotation is uniform and stable, and the flow rate of 0.122~1.203m/s velocity can be measured. The measuring speed of 336.13r/min can be recognized by reflecting optical fiber with high precision. At the same time, it can display the result curve in the host computer in real time, and has good stability. In conclusion, the advantages and disadvantages of the system and the direction of improvement in the future are analyzed.
【學(xué)位授予單位】:東北電力大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP274
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 謝思瑩;張小棟;;雙圈同軸光纖束傳感器三維空間輸出特性研究[J];振動.測試與診斷;2017年01期
2 王雪萍;王洪濤;劉會華;單波;;基于Modbus-RTU通信的門窗兩性檢測系統(tǒng)[J];自動化與儀表;2016年07期
3 梅教旭;汪磊;談圖;劉錕;王貴師;高曉明;;Raman光纖放大器在遠(yuǎn)距離遙感探測中的應(yīng)用[J];量子電子學(xué)報;2016年03期
4 孫科;張亮;何環(huán)宇;;三葉片垂直軸水輪機(jī)自啟動性能數(shù)值計算[J];哈爾濱工業(yè)大學(xué)學(xué)報;2016年04期
5 李小京;路璐;;插入式電磁流量計的研究[J];傳感器與微系統(tǒng);2016年04期
6 薛海東;郭迎清;杜玉環(huán);張小棟;丁毅;;基于DSP的高精度測頻方法與軟件設(shè)計[J];傳感器與微系統(tǒng);2016年01期
7 杜玉環(huán);郭迎清;薛海東;張小棟;丁毅;;基于LabVIEW的FFT光纖渦輪流量測量系統(tǒng)研究[J];儀表技術(shù)與傳感器;2015年11期
8 陳俊良;葉林;葛俊鋒;賈誠安;桂康;;TeeChart控件在實時檢測系統(tǒng)上位機(jī)軟件中的應(yīng)用[J];工業(yè)控制計算機(jī);2015年06期
9 吳桂清;張欣萍;羅鸝;柴介雄;;基于STM32F207與CAN總線的車載監(jiān)測系統(tǒng)設(shè)計[J];電源技術(shù);2015年02期
10 關(guān)松;;基于ANSYS的高精度渦輪流量計設(shè)計[J];化工自動化及儀表;2014年09期
相關(guān)碩士學(xué)位論文 前3條
1 彭歡;單模光纖照射反射式光纖位移傳感技術(shù)研究[D];哈爾濱工程大學(xué);2012年
2 王文輝;大管徑管道流量測量方法研究[D];華北電力大學(xué)(北京);2011年
3 翁倩玉;基于UG的葉片建模與檢測技術(shù)的研究[D];哈爾濱工業(yè)大學(xué);2008年
,本文編號:2066616
本文鏈接:http://sikaile.net/jingjilunwen/jiliangjingjilunwen/2066616.html