基于獨立成分分析的噪音分離研究與應用
發(fā)布時間:2018-03-18 08:24
本文選題:空調(diào) 切入點:噪音分離 出處:《華中科技大學》2016年碩士論文 論文類型:學位論文
【摘要】:隨著我國現(xiàn)代化工業(yè)水平的提高,國家經(jīng)濟不斷向前發(fā)展,空調(diào)的使用率越來越高。在空調(diào)運轉(zhuǎn)過程中,由空調(diào)部件振動而其引起的噪聲蘊含著空調(diào)運行狀態(tài)的重要信息,但是多個部件的振動和噪聲同時出現(xiàn),各類噪聲互相混合在一起導致很難提取到準確有用的信息。因此,需要尋找一種比較理想的噪音分離方法,從采集到的混合噪音信號中提取出各個部件對應的聲信號,從而及時有效地監(jiān)測空調(diào)的狀態(tài)并準確進行故障診斷。獨立成分分析(independent component analysis,ICA)是近幾年發(fā)展起來的信號處理方法,這種方法不依據(jù)任何先驗知識,依據(jù)信號的統(tǒng)計特性,從觀測到的混合信號中恢復出獨立成分。首先簡單介紹了課題研究背景和意義,以及國內(nèi)外的研究現(xiàn)狀,對獨立成分分析理論基礎進行了系統(tǒng)闡述,包括概率與統(tǒng)計知識,信息論知識,獨立成分分析的數(shù)學模型、可分離性條件等。然后研究了獨立成分分析的預處理過程:中心化過程和白化過程,實現(xiàn)了獨立成分分析中常用的兩個算法:信息最大化算法(Informax)和基于負熵最大化的快速算法(Fast ICA)。在Matlab平臺上用這兩個算法依次對正弦混合信號,音頻混合信號,噪音混合信號開展了分離實驗,從多個方面上對比分析了這兩個算法在分離混合信號的有效性。最后對負熵最大化的FastICA算法在空調(diào)噪音上的應用作了進一步探討,建立空調(diào)噪音分離的應用模型,并通過實驗提取出了不同部件的噪聲,獲得了較好的分離效果,驗證了FastICA算法在空調(diào)噪音分離方面的可行性。
[Abstract]:With the development of modern industry and the development of national economy, the utilization rate of air conditioning is getting higher and higher. In the process of air conditioning operation, the noise caused by the vibration of air conditioning components contains important information of the operating state of air conditioning. But the vibration and noise of many parts appear at the same time, and all kinds of noise are mixed together to make it difficult to extract accurate and useful information. Therefore, it is necessary to find an ideal method of noise separation. The corresponding acoustic signals of each component are extracted from the collected mixed noise signals, so that the condition of air conditioning can be monitored and the fault diagnosis can be carried out in a timely and effective manner. Independent component Analysis (ICA) is a signal processing method developed in recent years. In this method, independent components are recovered from the observed mixed signals without any prior knowledge and according to the statistical characteristics of the signals. Firstly, the background and significance of the research are briefly introduced, as well as the current research situation at home and abroad. The theoretical basis of independent component analysis (ICA) is systematically expounded, including probability and statistics knowledge, information theory knowledge, mathematical model of independent component analysis, Then we studied the pretreatment process of independent component analysis: centralization process and whitening process. Two common algorithms in Independent component Analysis (ICA) are implemented: information maximization algorithm (Informax) and Fast Matlab algorithm based on negative entropy maximization. The two algorithms are used to mix sinusoidal signal and audio signal in turn on Matlab platform. The separation experiments of noise mixing signals are carried out, and the effectiveness of the two algorithms in separating mixed signals is compared and analyzed from several aspects. Finally, the application of FastICA algorithm with maximum negative entropy to air conditioning noise is further discussed. The application model of air conditioning noise separation is established, and the noise of different parts is extracted through experiments. The better separation effect is obtained, and the feasibility of FastICA algorithm in air conditioning noise separation is verified.
【學位授予單位】:華中科技大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TB657.2
【參考文獻】
相關期刊論文 前6條
1 焦衛(wèi)東,常永萍;機械聲混合及其盲分離技術的研究[J];噪聲與振動控制;2004年06期
2 焦李成,馬海波,劉芳;多用戶檢測與獨立分量分析:進展與展望[J];自然科學進展;2002年04期
3 鐘振茂,陳進,鐘平;盲源分離技術用于機械故障診斷的研究初探[J];機械科學與技術;2002年02期
4 張賢達,保錚;盲信號分離[J];電子學報;2001年S1期
5 汪軍;基于高階譜的信號盲分離[J];東南大學學報(自然科學版);1996年05期
6 胡波,,凌燮亭;Hebbian無導師學習原理的盲均衡:(Ⅰ)最小相位通道[J];通信學報;1994年05期
相關博士學位論文 前1條
1 倪晉平;水聲信號盲分離技術研究[D];西北工業(yè)大學;2002年
本文編號:1628778
本文鏈接:http://sikaile.net/jingjilunwen/jiliangjingjilunwen/1628778.html
最近更新
教材專著