恒壓供水在長(zhǎng)距離輸水工程中應(yīng)用與研究
[Abstract]:The main task of the water supply project in the future science and technology city is to transform the present situation of the water source well in the Marchikou water source area, build a new water pipeline along Baige Road and Shunsha Road to build a new water transfer and storage plant on the north side of the future science and technology city, and adopt a reasonable water resources allocation scheme. So as to provide a reliable water source guarantee for the future science and technology city. The future water supply project of science and technology city is to ensure the safety of water supply and support the development of science and technology city in the future. Fifteen water source wells are selected as groundwater sources, and the maximum water supply scale and water plant storage capacity are 40,000 square per day. Each water source well is connected to the new pipeline through the present D line, the C line water main pipe is connected to the new pipeline, the total length of the newly built water pipeline is 28.08km, in which DN900 nodular cast iron pipe is 3.95km, DN800 nodular cast iron pipe is 24.13km, from west to east, From high to low laying to the future science and technology city water plant front pool, for the water plant to provide a stable water source. The water plant is arranged in the northwest corner of the future science and technology city, and eight water supply pumps are set up in the plant, and the pressure measuring points are set up at the outlet of the water plant. According to the outlet pressure signal of the pumping station, the water supply mode of frequency conversion and constant pressure is adopted to provide domestic water to the users in the science and technology city. Based on the design example of water supply project in science and technology city in the future, this paper makes a systematic study on the influence of constant pressure water supply mode on the whole water supply system, and analyzes the influence of each parameter in the water supply system on the system. The combined control of pump, frequency conversion and current regulating valve in similar projects is studied. The speed regulation performance curve of the pump is drawn up, and the speed regulation ratio is obtained by fitting the parallel curve of each pump, and the model of the whole water transmission system is established, and the excessive process of the water transmission system is calculated and analyzed. The influence of power frequency and frequency conversion on the system is compared under the condition of low flow rate. The principle and analysis process of closed pipeline fluid mathematical model in water transmission system are briefly described. Through theoretical analysis and numerical calculation, this paper puts forward the analysis results of the transition process of water supply project in science and technology city in the future, which provides scientific basis and technical support for the design and operation management of long distance water transmission project. The main conclusions are as follows: (1) for the condition that the water source is higher than the water plant, the drain phenomenon of the pipeline will occur in the condition of low flow rate, and the flow regulating valve should be set at the end of the pipeline to avoid the occurrence of the deflow phenomenon, and at the same time, according to different working conditions, Draw up the characteristic curve of the regulating valve. (2) for the condition that multiple water source wells supply water to the pipeline at the same time, the deep well pump of the water source well should be equipped with frequency converter. The influence of constant pressure water supply on the whole water transmission pipeline is reduced by speed regulation operation. (3) for the condition that multiple water source wells supply water to the pipeline at the same time, the starting and stopping of the pump should be carried out one by one in the process of starting and stopping the pump. There should be a corresponding interval. (4) the commissioning and operation scheme of the water transmission system and the water plant is put forward.
【學(xué)位授予單位】:清華大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TU991
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄒玉濤,張少武,蘇巍;關(guān)于恒壓供水主體方案的討論[J];水電站機(jī)電技術(shù);2005年05期
2 王志偉;;水廠恒壓供水控制系統(tǒng)的應(yīng)用[J];國(guó)內(nèi)外機(jī)電一體化技術(shù);2007年S1期
3 葛蕓萍;何瑞;;變頻技術(shù)在恒壓供水中的應(yīng)用[J];自動(dòng)化與儀器儀表;2008年03期
4 閆坤;;小區(qū)恒壓供水控制系統(tǒng)的研究[J];中國(guó)儀器儀表;2010年05期
5 李巍;郭利進(jìn);王秋平;;恒壓供水泵站系統(tǒng)的設(shè)計(jì)和開(kāi)發(fā)[J];工業(yè)控制計(jì)算機(jī);2012年07期
6 李玉昆;魏連喜;董文華;;恒壓供水設(shè)備的微型機(jī)控制[J];新技術(shù)新工藝;1992年06期
7 劉智;;小區(qū)恒壓供水控制系統(tǒng)的研究[J];內(nèi)蒙古民族大學(xué)學(xué)報(bào);2010年05期
8 李世波;;自動(dòng)化恒壓供水控制系統(tǒng)方案分析[J];今日科苑;2010年24期
9 程麗寧;;智能恒壓供水監(jiān)控調(diào)節(jié)系統(tǒng)[J];科技信息;2011年25期
10 楊志友;;冷卻恒壓供水控制系統(tǒng)[J];科技資訊;2011年29期
相關(guān)會(huì)議論文 前10條
1 畢學(xué)武;;新型恒壓供水控制系統(tǒng)及應(yīng)用[A];第11屆全國(guó)電氣自動(dòng)化電控系統(tǒng)學(xué)術(shù)年會(huì)論文集[C];2002年
2 楊澎;張力;;井下涌水直接利用恒壓供水方案[A];第十七屆全國(guó)煤礦自動(dòng)化學(xué)術(shù)年會(huì)、中國(guó)煤炭學(xué)會(huì)自動(dòng)化專業(yè)委員會(huì)學(xué)術(shù)會(huì)議論文集[C];2007年
3 楊曉玲;杜宇人;王克明;;變頻調(diào)速恒壓供水系統(tǒng)在企業(yè)中的應(yīng)用[A];2007'儀表,自動(dòng)化及先進(jìn)集成技術(shù)大會(huì)論文集(二)[C];2007年
4 劉瑾;楊海馬;;一種新型恒壓供水測(cè)控方法的研究[A];第七屆青年學(xué)術(shù)會(huì)議論文集[C];2005年
5 萬(wàn)紹鉎;胡翹楚;任延深;;基于PLC的恒壓供水控制系統(tǒng)[A];第二十五屆中國(guó)(天津)2011’IT、網(wǎng)絡(luò)、信息技術(shù)、電子、儀器儀表創(chuàng)新學(xué)術(shù)會(huì)議論文集[C];2011年
6 陳浩;林錦生;王琳基;;采用變頻器實(shí)現(xiàn)水泵組恒壓供水的方法[A];福建省水力發(fā)電工程學(xué)會(huì)2006年學(xué)術(shù)論文匯編[C];2006年
7 趙慧君;賀潔;;淺析PLC和變頻器在恒壓供水控制系統(tǒng)中的應(yīng)用[A];2004年晉冀魯豫鄂蒙川云貴甘滬十一省市區(qū)機(jī)械工程學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(河南分冊(cè))[C];2004年
8 趙暉;;基于PLC的供應(yīng)室變頻調(diào)速恒壓供水系統(tǒng)實(shí)現(xiàn)[A];2011年浙江省醫(yī)學(xué)會(huì)醫(yī)學(xué)工程學(xué)分會(huì)第九屆學(xué)術(shù)年會(huì)論文匯編[C];2011年
9 熊敏;;淺析用變頻器實(shí)現(xiàn)恒壓供水[A];全國(guó)煉鋼連鑄過(guò)程自動(dòng)化技術(shù)交流會(huì)論文集[C];2006年
10 安軍強(qiáng);;監(jiān)頻監(jiān)相器在變頻調(diào)速恒壓供水系統(tǒng)中的應(yīng)用[A];中國(guó)電工技術(shù)學(xué)會(huì)電力電子學(xué)會(huì)第八屆學(xué)術(shù)年會(huì)論文集[C];2002年
相關(guān)重要報(bào)紙文章 前2條
1 許勇邋記者 巢宏偉;十里增壓站自動(dòng)恒壓供水改造完成[N];九江日?qǐng)?bào);2008年
2 江西 陶波;西門(mén)子MM430變頻器在恒壓供水中的控制電路與參數(shù)設(shè)定[N];電子報(bào);2013年
相關(guān)碩士學(xué)位論文 前10條
1 張新國(guó);基于PLC的恒壓供水控制系統(tǒng)設(shè)計(jì)[D];大連理工大學(xué);2015年
2 王勇;恒壓供水在長(zhǎng)距離輸水工程中應(yīng)用與研究[D];清華大學(xué);2015年
3 周博;恒壓供水智能控制系統(tǒng)的研究與開(kāi)發(fā)[D];中國(guó)海洋大學(xué);2008年
4 李慧;滕州市高層小區(qū)無(wú)塔恒壓供水控制系統(tǒng)的設(shè)計(jì)[D];中國(guó)海洋大學(xué);2011年
5 堯歡;自動(dòng)恒壓供水監(jiān)控系統(tǒng)[D];華南理工大學(xué);2014年
6 孫洪海;恒壓供水技術(shù)研究[D];哈爾濱工程大學(xué);2003年
7 肖秀華;基于MCGS、變頻器和PLC實(shí)現(xiàn)的恒壓供水控制系統(tǒng)的設(shè)計(jì)[D];蘇州大學(xué);2009年
8 環(huán)瑋;電廠供水系統(tǒng)恒壓控制應(yīng)用研究[D];南京師范大學(xué);2012年
9 于穎;基于ARM的高樓恒壓供水控制器的研究與開(kāi)發(fā)[D];中國(guó)海洋大學(xué);2010年
10 許智榜;X~2S~2智能變頻電控系統(tǒng)[D];武漢理工大學(xué);2005年
,本文編號(hào):2495235
本文鏈接:http://sikaile.net/jingjilunwen/jianzhujingjilunwen/2495235.html