改進基因表達式編程在深基坑變形預(yù)測中的應(yīng)用研究
[Abstract]:With the further development of urbanization in China, a large number of high-rise and super-tall buildings have emerged, and the requirements of these buildings for foundation are quite strict. Among them, deep foundation pit in foundation is their typical representative. Buildings or structures in the process of use will produce certain deformation and settlement, which is very disadvantageous to the use of buildings. Therefore, the scientific evaluation and deformation prediction of deep foundation pit are of great practical significance to the safe use of buildings. In this paper, the gene expression programming algorithm is used as the research method, and its super discovery ability and unique algorithm advantages are utilized, and the algorithm is further improved to make it more suitable for practical application. The main research work includes: firstly, the research status and background significance of deep foundation pit deformation monitoring and gene expression programming at home and abroad are expounded. Secondly, the basic principle of the traditional gene expression programming algorithm and the defects in its practical application are analyzed. Thirdly, using the basic idea of cloud model theory and the size of population fitness, the genetic control parameters are selected by X normal cloud generator to improve the traditional gene expression model. Finally, using the first 20 observation data of two monitoring points of deep foundation pit as the training sample, the prediction model before and after the improvement is used to predict the deformation data of the later five periods of deep foundation pit, and the accuracy of the data and the influence of spatial distribution are analyzed. Through the analysis and comparison of examples, it can be found that the improved model is more than twice as accurate as the traditional one. It is proved that the improved gene expression model has improved both the convergence speed and the prediction accuracy. The research value of the improved model in the field of deep foundation pit deformation prediction is demonstrated.
【學(xué)位授予單位】:江西理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TU433
【參考文獻】
相關(guān)期刊論文 前10條
1 王瑞和;仲冠宇;周衛(wèi)東;李羅鵬;楊煥強;王方祥;;基于基因表達式編程算法的磨料射流切割深度預(yù)測模型[J];中國石油大學(xué)學(xué)報(自然科學(xué)版);2015年01期
2 王艷;;基因表達式編程在時序變形數(shù)據(jù)處理中的應(yīng)用[J];河南科技;2014年24期
3 曹凈;丁文云;趙黨書;宋志剛;劉海明;;基于LSSVM-ARMA模型的基坑變形時間序列預(yù)測[J];巖土力學(xué);2014年S2期
4 劉玉會;;基于灰色理論的基坑支護結(jié)構(gòu)變形預(yù)測[J];科技創(chuàng)新導(dǎo)報;2014年25期
5 曹正;;基于BP神經(jīng)網(wǎng)絡(luò)的基坑變形預(yù)測[J];公路交通科技(應(yīng)用技術(shù)版);2014年06期
6 萬志輝;劉紅艷;步艷潔;;基于灰色理論的深基坑圍護結(jié)構(gòu)變形預(yù)測研究[J];遼寧工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2014年03期
7 韓鵬偉;吳胤龍;李磊;;基于灰色理論的軟土地區(qū)深基坑變形預(yù)測研究[J];工程建設(shè)與設(shè)計;2014年05期
8 劉萬松;楊松林;于暉;;深基坑變形監(jiān)測數(shù)據(jù)時序分析法的建模與預(yù)報[J];北京測繪;2014年01期
9 林亞楠;;灰色理論在基坑變形預(yù)測中的應(yīng)用研究[J];硅谷;2014年02期
10 劉小生;李勝;趙相博;;基于基因表達式編程的PM_(2.5)濃度預(yù)測模型研究[J];江西理工大學(xué)學(xué)報;2013年05期
相關(guān)碩士學(xué)位論文 前2條
1 張增銀;基因表達式編程與HMM融合技術(shù)應(yīng)用研究[D];廣西師范學(xué)院;2010年
2 張韜;深基坑變形預(yù)測模型研究及工程應(yīng)用[D];中南大學(xué);2009年
,本文編號:2345249
本文鏈接:http://sikaile.net/jingjilunwen/jianzhujingjilunwen/2345249.html