R134a在螺旋套管冷凝器中的換熱性能實(shí)驗(yàn)研究
[Abstract]:It is very important to study the heat transfer performance of the air source heat pump water heater. This is because the air source heat pump water heater is not only safe and energy-saving, but also easy to install and use, no pollution to the environment. More importantly, it has the advantages of wide range of use, long service life and low maintenance costs. The characteristics of refrigerant and the heat transfer effect of condenser determine the heat transfer performance of air source heat pump water heater to a certain extent. Spiral tube heat exchanger has the advantages of compact structure, simple manufacture, low price and high heat transfer intensity. Especially in the process of refrigerant substitution, the accuracy of heat transfer coefficient of spiral tube annular space refrigerant is one of the key parameters necessary to study the condensation heat transfer performance of a new type of alternative refrigerant. Even so, the thermal and physical properties of R134a and R22 are not the same. Therefore, it is very important to study the heat transfer performance and pressure drop characteristics of R134a for improving the original system equipment, researching and developing new system equipment. The total heat transfer capacity, total heat transfer coefficient, suction and exhaust pressure of the compressor, input power of the system, heat production coefficient and heat production coefficient of the condenser are tested. The total heat transfer capacity, total heat transfer coefficient, suction and exhaust pressure of the compressor, and the input power of the system are measured when the inlet water temperature of the condenser is constant under the condition of DC steady state. (1) When the water flow is circulated, the inlet water flow of the condenser is constant, and with the inlet water temperature rising, the total heat transfer coefficient of the condenser is changed. When the inlet water temperature of the spiral tube condenser increases from 25.2 C to 63 C, the total heat transfer coefficient decreases. The total heat transfer coefficient increases from 1184.12 W / (m2 K) to 1643.21 W / (m2 K), the suction pressure rises from 0.34 MPa to 0.38 MPa, the exhaust pressure rises from 0.77 MPa to 2.00 MPa, the input power rises from 1040 W to 2100 W, the thermal performance coefficient COP decreases from 4.4 to 1.2, and the heat production decreases from 1387.83 W to 667.14 W. W. (2) When the inlet water temperature of the condenser is constant, the total heat transfer capacity and total heat transfer coefficient of the condenser increase with the increase of the inlet water flow rate, while the suction, exhaust pressure and input power of the compressor decrease. The heat production and heating coefficient of the heat pump system increase with the increase of the inlet water flow rate. When the inlet flow rate of the spiral tube condenser increases from 1.19 m3/h to 2.16 m3/h, the total heat transfer capacity of the condenser increases from 4025.72 W to 7565.71 W, the total heat transfer coefficient increases from 1472.03 W /(m2.K) to 3956.29 W /(m2.K), the suction pressure decreases from 0.36 MPa to 0.35 MPa, the exhaust pressure decreases from 1.38 MPa to 1.27 MPa, and the system input power decreases from 1488.67 W to 1 956.29 W /(m2.K). At 1423.75W, the COP of the system increases from 2.5 to 3.0, and the heat of the system increases from 986.90W to 1087.06W. (3) When the inlet water temperature of the condenser is constant, the total heat transfer capacity and the total heat transfer coefficient of the spiral sleeve condenser increase with the increase of the inlet water flow rate. When the inlet water temperature is kept at 22 C and the inlet water flow rate of the spiral tube condenser increases from 0.26 m3/h to 0.71 m3/h, the total heat transfer capacity of the spiral tube condenser increases from 3614.24 W to 4165.96 W, the total heat transfer coefficient increases from 1999.03 W /(m2.K) to 2835.92 W /(m2.K), and the suction pressure of the compressor increases from 0.32 MP. A decreases to 0.30 MPa, the exhaust pressure decreases from 0.84 MPa to 0.62 MPa, and the input power of the system decreases from 1040 W to 920 W. In this paper, the heat transfer performance of the spiral tube condenser and the operation performance of the heat pump are studied experimentally and theoretically. The research is expected to provide reference for optimum design of heat exchanger and energy-saving operation of heat pump water heater in refrigerant substitution.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TU822
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 魏耀東,魏奇業(yè),韓光澤,華賁;多效蒸發(fā)器換熱管的換熱性能和機(jī)械強(qiáng)度分析[J];華北電力大學(xué)學(xué)報(bào);2003年05期
2 張寅平;非接觸式汽液固系統(tǒng)儲(chǔ)換熱性能的實(shí)驗(yàn)研究[J];太陽(yáng)能學(xué)報(bào);1998年04期
3 連添達(dá);靜止密閉空氣在降溫過(guò)程中換熱性能的測(cè)定研究[J];天津商學(xué)院學(xué)報(bào);1991年03期
4 劉召軍;謝旭良;李增耀;屈治國(guó);陶文銓;;熱管型散熱器換熱性能的實(shí)驗(yàn)研究及數(shù)值模擬[J];工程熱物理學(xué)報(bào);2009年07期
5 程文龍;韓豐云;韋文靜;;單相流體通過(guò)多孔金屬換熱器換熱性能的理論分析[J];化工學(xué)報(bào);2011年10期
6 蔣恩澤;強(qiáng)天偉;黃書峰;曹鵬華;;雙U型樁基埋管換熱性能模擬與研究[J];科技致富向?qū)?2012年35期
7 高桂芝;高俊明;;地源熱泵U形地埋管換熱性能及其影響因素分析[J];河北工程技術(shù)高等?茖W(xué)校學(xué)報(bào);2013年01期
8 李青;劉金祥;陳曉春;徐穩(wěn)龍;丁高;潘云鋼;;U形毛細(xì)管席冷卻頂板換熱性能數(shù)值模擬與分析[J];暖通空調(diào);2010年04期
9 張東生;杜揚(yáng);陳思維;;管殼式換熱器換熱性能的數(shù)值模擬研究[J];節(jié)能技術(shù);2006年05期
10 鄭榮波;劉剛;劉自華;;兩相閉式熱虹吸管的幾何尺寸對(duì)其換熱性能的影響研究[J];制冷;2009年02期
相關(guān)會(huì)議論文 前10條
1 岳麗燕;韓再生;;含水層對(duì)垂直地埋管換熱性能影響分析[A];第十三屆中國(guó)科協(xié)年會(huì)第14分會(huì)場(chǎng)-地?zé)崮荛_發(fā)利用與低碳經(jīng)濟(jì)研討會(huì)論文集[C];2011年
2 吳祥生;楊嘉;黃金強(qiáng);信海;;重慶市某高校綠色建筑示范樓地?zé)崮軗Q熱性能測(cè)試及分析[A];全國(guó)暖通空調(diào)制冷2010年學(xué)術(shù)年會(huì)資料集[C];2010年
3 章曉龍;李征濤;;潤(rùn)滑油對(duì)制冷系統(tǒng)換熱性能影響的研究進(jìn)展[A];上海市制冷學(xué)會(huì)2013年學(xué)術(shù)年會(huì)論文集[C];2013年
4 史學(xué)增;王偉勇;張定才;;船用冷凝器冷凝強(qiáng)化管換熱性能研究[A];上海市制冷學(xué)會(huì)2007年學(xué)術(shù)年會(huì)論文集[C];2007年
5 楊敏;陳穎;史保新;;廣州與兩類地區(qū)埋地?fù)Q熱器換熱性能的比較[A];中國(guó)制冷學(xué)會(huì)2007學(xué)術(shù)年會(huì)論文集[C];2007年
6 朱賀;張永存;劉書田;;開孔金屬泡沫換熱性能表征方法研究[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年
7 李魁山;張旭;高軍;劉俊;;樁基式土壤源熱泵換熱器換熱性能及土壤溫升研究[A];中國(guó)制冷學(xué)會(huì)2007學(xué)術(shù)年會(huì)論文集[C];2007年
8 張銳;張旭;周翔;董麗娟;唐凱;;流量對(duì)地埋管換熱性能影響的實(shí)驗(yàn)研究[A];走中國(guó)創(chuàng)造之路——2011中國(guó)制冷學(xué)會(huì)學(xué)術(shù)年會(huì)論文集[C];2011年
9 劉艷艷;王巍;;場(chǎng)協(xié)同理論監(jiān)測(cè)主表面式回?zé)崞鞯膿Q熱性能[A];2008年全國(guó)振動(dòng)工程及應(yīng)用學(xué)術(shù)會(huì)議暨第十一屆全國(guó)設(shè)備故障診斷學(xué)術(shù)會(huì)議論文集[C];2008年
10 高彥明;羅行;Stephan Kabelac;;蒸發(fā)器在熱虹吸系統(tǒng)中的阻力壓降與換熱性能的數(shù)學(xué)建模與分析[A];中國(guó)化工學(xué)會(huì)2009年年會(huì)暨第三屆全國(guó)石油和化工行業(yè)節(jié)能節(jié)水減排技術(shù)論壇會(huì)議論文集(上)[C];2009年
相關(guān)碩士學(xué)位論文 前10條
1 姚麗華;熱源塔換熱性能研究與應(yīng)用[D];南京師范大學(xué);2015年
2 李豪;基于有機(jī)朗肯循環(huán)余熱回收系統(tǒng)的換熱器結(jié)構(gòu)數(shù)值研究[D];華北電力大學(xué);2015年
3 袁博;內(nèi)插螺旋翅片式EGR冷卻器結(jié)構(gòu)及流動(dòng)傳熱性能研究[D];浙江大學(xué);2016年
4 白崇儼;小通道蒸發(fā)器熱虹吸循環(huán)換熱性能的研究[D];浙江大學(xué);2016年
5 洪珊瑚;R134a在螺旋套管冷凝器中的換熱性能實(shí)驗(yàn)研究[D];西安科技大學(xué);2015年
6 張e,
本文編號(hào):2247200
本文鏈接:http://sikaile.net/jingjilunwen/jianzhujingjilunwen/2247200.html