天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

高應(yīng)力條件下層狀巖體力學(xué)特性及時效破裂機制研究

發(fā)布時間:2018-08-24 12:44
【摘要】:層狀巖體的力學(xué)特性及時效破裂演化規(guī)律是巖石力學(xué)領(lǐng)域重要的研究課題之一。大量實例表明,層狀巖體工程的失穩(wěn)與破壞很多都存在著滯后性,特別是在高地應(yīng)力環(huán)境中開挖卸荷,需要很長一段時間調(diào)整巖體應(yīng)力從而達到新的平衡,有時甚至?xí)l(fā)生時滯性巖爆和時效大變形,嚴(yán)重危害工程的施工安全與長期穩(wěn)定。因此,層狀巖體在高應(yīng)力條件下的力學(xué)特性和時效細觀破裂演化規(guī)律需要進行更深入的認識和研究。鑒于此,本文在丹巴石英云母片巖真三軸試驗的基礎(chǔ)上,借助三維顆粒離散元理論,引入SJ模型、PSC模型和超級單元clump技術(shù),構(gòu)建了符合層狀巖體的細觀力學(xué)模型,對不同結(jié)構(gòu)面及不同應(yīng)力狀態(tài)和應(yīng)力路徑下層狀巖體的力學(xué)特性和時效破裂進行了研究。本文的主要研究工作如下:1.以指數(shù)型細觀內(nèi)應(yīng)力驅(qū)動的損傷速率和三維顆粒離散元為基礎(chǔ),結(jié)合能夠描述細觀層面時效破裂的PSC模型和描述節(jié)理效應(yīng)的SJ模型,提出了能夠模擬層狀巖體時效破裂效應(yīng)的細觀力學(xué)計算方法,用于模擬巖體的瞬態(tài)和時效破裂的結(jié)構(gòu)面效應(yīng)。同時,結(jié)合三維顆粒離散元和地震矩張量理論,給出了模擬巖體瞬態(tài)和時效破裂的AE計算方法及空間定位方法。2.基于三維顆粒流理論,通過引入SJ模型、PSC模型和超級單元clump技術(shù),并依據(jù)丹巴水電站石英云母片巖的SEM礦物成份檢測結(jié)果,建立了基于礦物形顆粒狀的層狀巖體細觀結(jié)構(gòu)模型,根據(jù)真三軸瞬態(tài)壓縮試驗和流變試驗結(jié)果以及巖石細觀力學(xué)參數(shù)識別方法,確定了石英云母片巖的瞬態(tài)和時效細觀力學(xué)參數(shù),構(gòu)建了層狀巖體的時效細觀力學(xué)數(shù)值模型。3.基于層狀巖體時效細觀力學(xué)數(shù)值模型,對不同節(jié)理傾角條件下巖石進行了真三軸瞬態(tài)力學(xué)試驗,研究了層狀巖體瞬態(tài)力學(xué)特征的結(jié)構(gòu)面效應(yīng)和AE特征,論述層狀巖體變形破裂演化規(guī)律及細觀演化機理。結(jié)果表明:層狀巖體的破壞模式隨著結(jié)構(gòu)面傾角的變化,由巖石本身控制轉(zhuǎn)變?yōu)閹r石、結(jié)構(gòu)面共同控制,再轉(zhuǎn)變?yōu)橛蓭r石本身控制,其中,在45°~75°之間,巖石的破壞模式主要由結(jié)構(gòu)面控制。4.基于層狀巖體時效細觀力學(xué)數(shù)值模型,對不同節(jié)理傾角條件下巖石進行了真三軸蠕變數(shù)值試驗,研究層狀巖體時效破裂的結(jié)構(gòu)面效應(yīng)和AE特征,論述巖石時效破裂演化規(guī)律及細觀演化機理。結(jié)果表明:隨著結(jié)構(gòu)面傾角的增加,層狀巖體時效變形模式由衰減蠕變轉(zhuǎn)化為穩(wěn)態(tài)-加速蠕變轉(zhuǎn)化界限在結(jié)構(gòu)面傾角45°左右;在衰減蠕變類型中,結(jié)構(gòu)面傾角越小,收斂速率越大,收斂時間越快,隨著結(jié)構(gòu)面傾角的增加,收斂時間逐步增加,收斂速率越小;在加速蠕變類型中,層狀巖體破壞時間近似呈“U”形,傾角45°左右時,巖體破壞時間較長,隨著傾角增加,巖體破壞時間逐步降低,在傾角60°左右時破壞時間最短,隨著傾角持續(xù)增加,巖體破壞時間逐步增加。
[Abstract]:The mechanical properties and aging fracture evolution of layered rock mass are one of the important research topics in rock mechanics field. A large number of examples show that many of the instability and failure of layered rock mass engineering have hysteresis, especially in the environment of high ground stress excavation unloading, it needs a long time to adjust the rock mass stress to achieve a new balance. Sometimes, delay rockburst and large deformation will occur, seriously endangering the construction safety and long-term stability. Therefore, the mechanical properties of layered rock mass under high stress conditions and the evolution law of aging meso-fracture need to be further understood and studied. In view of this, based on the true triaxial test of Danba quartz mica schist, with the aid of three-dimensional particle discrete element theory, the SJ model and super unit clump technique are introduced to construct a meso-mechanical model for layered rock mass. The mechanical properties and aging fracture of layered rock mass under different structural planes, different stress states and stress paths are studied. The main research work of this paper is as follows: 1. Based on the damage rate driven by the exponential meso-stress and the three-dimensional particle discrete element, the PSC model which can describe the aging rupture of the meso-plane and the SJ model which can describe the joint effect are combined. In this paper, a mesomechanical method which can simulate the aging fracture effect of layered rock mass is presented, which can be used to simulate the transient state of rock mass and the structural plane effect of aging fracture. At the same time, based on the theory of three dimensional particle discrete element and seismic moment Zhang Liang, the AE calculation method and spatial location method for simulating the transient and aging rupture of rock mass are presented. Based on the three-dimensional particle flow theory, by introducing SJ model and super unit clump technology, and based on the results of SEM mineral composition detection of quartz mica schist in Danba Hydropower Station, a meso-structure model of layered rock mass based on mineral granulation is established. According to the results of the true triaxial transient compression test and rheological test and the identification method of the meso-mechanical parameters of rock, the transient and aging meso-mechanical parameters of quartz mica schist are determined, and the numerical model of time-dependent mesomechanics of layered rock mass is constructed. Based on the numerical model of time-dependent mesomechanics of layered rock mass, the true triaxial transient mechanical tests of rocks with different joint dip angles were carried out, and the structural plane effect and AE characteristics of transient mechanical characteristics of layered rock mass were studied. The evolution law of deformation and fracture of layered rock mass and the mechanism of mesoscopic evolution are discussed. The results show that the failure mode of layered rock mass changes from rock itself to rock, and then to rock itself, and then to rock itself with the change of slope angle of structural plane, in which, between 45 擄and 75 擄, the failure mode of layered rock is controlled by rock itself. The failure mode of rock is mainly controlled by structural plane. Based on the aging mesomechanical numerical model of layered rock mass, the true triaxial creep numerical tests of rocks with different joint inclination angles were carried out. The structural plane effect and AE characteristics of aging fracture of layered rock mass were studied. This paper discusses the evolution law of aging fracture of rock and the mechanism of meso-evolution. The results show that with the increase of the dip angle of the structural plane, the aging deformation model of layered rock mass changes from attenuated creep to steady-state accelerated creep transformation at about 45 擄of the structural plane inclination, and the smaller the dip angle of the structural plane is in the type of attenuated creep. The larger the convergence rate is, the faster the convergence time is. With the increase of the inclination angle of the structure plane, the convergence time increases gradually, and the convergence rate is smaller. In the accelerated creep type, the failure time of layered rock mass is approximately "U" shape, and the slope angle is about 45 擄. The time of rock mass failure is longer, with the increase of inclination angle, the time of rock mass failure decreases gradually, and the time of rock mass failure increases gradually with the increase of inclination angle, which is the shortest when the inclination angle is about 60 擄.
【學(xué)位授予單位】:長江科學(xué)院
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TU45

【相似文獻】

相關(guān)期刊論文 前10條

1 肖森宏;層狀巖體的鉑礦層[J];地質(zhì)地球化學(xué);1985年12期

2 郭牡丹;王述紅;張航;徐源;;層狀巖體強度數(shù)值模擬及其討論[J];東北大學(xué)學(xué)報(自然科學(xué)版);2010年10期

3 范志杰;;四川白馬輝長巖質(zhì)層狀巖體中斜長石的形變與分布[J];礦物巖石;1982年01期

4 朱章森;胡遠來;姜若維;;攀西基性超基性層狀巖體分層的數(shù)學(xué)地質(zhì)研究[J];礦物巖石;1983年01期

5 汪云亮,王旺章,李巨初,韓文喜;白馬層狀巖體巖漿分離結(jié)晶作用[J];成都地質(zhì)學(xué)院學(xué)報;1990年03期

6 張桂民;李銀平;施錫林;楊春和;王李娟;;一種交互層狀巖體模型材料制備方法及初步試驗研究[J];巖土力學(xué);2011年S2期

7 左雙英;葉明亮;唐曉玲;續(xù)建科;史文兵;;層狀巖體地下洞室破壞模式數(shù)值模型及驗證[J];巖土力學(xué);2013年S1期

8 郭履和;楊本錦;張冬梅;曾晴;;攀西地區(qū)白馬和紅格層狀巖體分異特征的數(shù)學(xué)地質(zhì)論證[J];礦床地質(zhì);1984年03期

9 王啟耀;趙法鎖;;考慮偶應(yīng)力的層狀巖體地下洞室開挖模擬[J];西安科技大學(xué)學(xué)報;2006年01期

10 朱澤奇;盛謙;梅松華;張占榮;;改進的遍布節(jié)理模型及其在層狀巖體地下工程中的應(yīng)用[J];巖土力學(xué);2009年10期

相關(guān)會議論文 前10條

1 肖遠;王思敬;杜永廉;;層狀巖體結(jié)構(gòu)變形破壞研究[A];第四屆全國工程地質(zhì)大會論文選集(二)[C];1992年

2 李仲奎;陳振聲;;層狀巖體三維邊界元應(yīng)力分析中的面力不連續(xù)問題[A];第二屆全國青年巖石力學(xué)與工程學(xué)術(shù)研討會論文集[C];1993年

3 張海東;;層狀巖體彈塑性問題的有限單元分析[A];地下工程經(jīng)驗交流會論文選集[C];1982年

4 左雙英;葉明亮;唐曉玲;續(xù)建科;史文兵;;層狀巖體地下洞室破壞模式數(shù)值模型及驗證[A];《巖土力學(xué)》vol.34 增刊1 2013[C];2013年

5 肖遠;;軸向力與橫向力共同作用下層狀巖體的臨界荷載問題[A];水電與礦業(yè)工程中的巖石力學(xué)問題——中國北方巖石力學(xué)與工程應(yīng)用學(xué)術(shù)會議文集[C];1991年

6 熊詩湖;鄔愛清;周火明;;層狀巖體變形試驗的尺寸效應(yīng)[A];第十屆全國巖石力學(xué)與工程學(xué)術(shù)大會論文集[C];2008年

7 張子新;華安增;;層狀巖體滑落的分形模型[A];第二屆全國青年巖石力學(xué)與工程學(xué)術(shù)研討會論文集[C];1993年

8 李仲奎;H.A.Mang;;層狀巖體邊界單元法中的奇異性問題[A];首屆全國青年巖石力學(xué)學(xué)術(shù)研討會論文集[C];1991年

9 范雷;唐輝明;王亮清;;基于離散單元法的層狀巖體地基極限承載力初探[A];中國軟巖工程與深部災(zāi)害控制研究進展——第四屆深部巖體力學(xué)與工程災(zāi)害控制學(xué)術(shù)研討會暨中國礦業(yè)大學(xué)(北京)百年校慶學(xué)術(shù)會議論文集[C];2009年

10 陳安敏;顧金才;沈俊;明治清;;層狀巖體加固中錨固體周圍巖層塌落深度的近似計算方法[A];地基基礎(chǔ)工程與錨固注漿技術(shù):2009年地基基礎(chǔ)工程與錨固注漿技術(shù)研討會論文集[C];2009年

相關(guān)博士學(xué)位論文 前4條

1 梅松華;層狀巖體開挖變形機制及破壞機理研究[D];中國科學(xué)院研究生院(武漢巖土力學(xué)研究所);2008年

2 周蓮君;層狀巖體破壞特征的試驗和數(shù)值分析及其邊坡穩(wěn)定性研究[D];中南大學(xué);2009年

3 楊樂;基于Cosserat介質(zhì)理論的層狀巖體均勻化數(shù)值分析與應(yīng)用研究[D];重慶大學(xué);2009年

4 劉彬;軟硬相間層狀巖體工程地質(zhì)特性及作為高混凝土重力壩壩基巖體的適宜性研究[D];成都理工大學(xué);2010年

相關(guān)碩士學(xué)位論文 前10條

1 程鵬;高應(yīng)力條件下層狀巖體力學(xué)特性及時效破裂機制研究[D];長江科學(xué)院;2015年

2 冷霜;層狀巖體變形試驗的數(shù)值模擬[D];西南交通大學(xué);2008年

3 熊詩湖;層狀巖體變形特性試驗研究[D];長江科學(xué)院;2007年

4 李月;層狀巖體聲學(xué)特性研究[D];西華大學(xué);2007年

5 王濤;基于復(fù)合材料力學(xué)的層狀巖體錨固支護系統(tǒng)研究與數(shù)值模擬[D];武漢理工大學(xué);2006年

6 王恩波;層狀巖體中拱形巷道拱肩破壞機理及合理支護技術(shù)研究[D];西安科技大學(xué);2014年

7 田治金;喀斯特環(huán)境下層狀巖體物理力學(xué)參數(shù)取值研究[D];貴州大學(xué);2009年

8 劉彬;軟硬相間層狀巖體變形參數(shù)理論研究及工程應(yīng)用[D];成都理工大學(xué);2006年

9 秦二濤;深埋層狀巖體地下硐室穩(wěn)定性及支護技術(shù)研究[D];中南大學(xué);2012年

10 邵培柳;層狀巖體開洞地基穩(wěn)定性分析[D];重慶大學(xué);2014年



本文編號:2200857

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/jianzhujingjilunwen/2200857.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶d1c43***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com