底部現(xiàn)澆預(yù)制裝配剪力墻抗震性能試驗(yàn)研究
[Abstract]:Housing industrialization is the development direction of housing construction in our country. At the same time prefabricated and assembled integral shear wall structure is also a kind of building structure system suitable for housing industrialization in our country. At present, prefabricated concrete shear walls are generally prefabricated by layers, and the upper and lower prefabricated shear wall panels are connected as a whole through a certain connection structure. The edge member at both ends of the shear wall limb is an important force and deformation position, and the edge member provides the main bearing capacity and ductility of the shear wall. Therefore, the key to realize the integrity of assembled shear wall is to solve the problem of reliability of connection between the edge components of assembled shear wall. On the basis of reading a large number of related documents, in order to further simplify the horizontal splicing method of prefabricated shear wall, improve the efficiency and reduce the cost, at the same time, in order to improve the stiffness and bearing capacity of the joint, In view of the improvement of the existing "through" shape joint connection of a zigzag shear wall, a kind of post-pouring area with a height of 600mm and a wide 500mm on the left and right sides of the bottom and left side of the shear wall is put forward, and the other parts are prefabricated. A "concave" zigzag joint connection method is formed by pouring concrete through long pouring holes in the upper wall into the post-pouring area and compacting with vibration. The main works and conclusions are as follows: (1) two cast-in-place four cast-in-place prefabricated one-zigzag shear wall members are designed and manufactured. Under the condition of 0.1 and 0.2 axial compression ratio, the low cycle repeated load tests were carried out on one cast-in-situ and two prefabricated specimens, respectively. The test results show that the damage of cast-in-place wall is concentrated on the root of the wall limb, and the damage of the precast wall is not only at the root of the wall, but also on the concrete surface of the joint at the bottom of the post-pouring area. The ductility of the member decreases with the increase of axial compression ratio. The yield load and ultimate bearing capacity of members increase with the increase of axial compression ratio. (2) by observing the crack development, failure process and failure form, hysteretic curve and skeleton curve of prefabricated specimens and cast-in-situ specimens under the same axial compression ratio, The stiffness, bearing capacity, ductility and energy dissipation capacity are comprehensively evaluated. The experimental results show that the hysteretic curve of the prefabricated specimen presents a full "S" shape, and the ductility coefficient reaches the requirements of the seismic code. It has good seismic energy dissipation ability, and has little difference compared with cast-in-place specimens. (3) using ABAQUS to simulate and analyze monotonously increasing horizontal force loading of cast-in-place specimens under different axial compression ratios, the bottom cast-in-place prefabricated shear walls are loaded with increasing horizontal forces. By considering the damage of concrete during loading, the development of concrete plastic hinge, the stress-strain relationship and load-displacement of steel bar are reproduced intuitively and compared with the experimental results. The results show that the finite element analysis results are close to the experimental results. Through the above work, it can be seen that the horizontal joint of prefabricated shear wall is transformed into "concave" zigzag joint, which not only improves the position of some horizontal joints, strengthens the connection performance, but also simplifies the operation, saves the cost and has the novelty.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TU398.2;TU352.11
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 何繼峰;王滋軍;戴文婷;劉偉慶;;適合建筑工業(yè)化的混凝土結(jié)構(gòu)體系在我國的研究與應(yīng)用現(xiàn)狀[J];混凝土;2014年06期
2 劉家彬;陳云鋼;郭正興;張建璽;;裝配式混凝土剪力墻水平拼縫U型閉合筋連接抗震性能試驗(yàn)研究[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年03期
3 樊則森;李文;陳蓉子;譚瑞娟;;裝配式剪力墻住宅建筑設(shè)計(jì)的內(nèi)容與方法[J];住宅產(chǎn)業(yè);2013年04期
4 陳濤;肖從真;田春雨;徐培福;;高軸壓比鋼-混凝土組合剪力墻壓彎性能試驗(yàn)研究[J];土木工程學(xué)報(bào);2011年06期
5 錢稼茹;彭媛媛;張景明;秦珩;李建樹;劉國權(quán);趙豐東;李祿榮;;豎向鋼筋套筒漿錨連接的預(yù)制剪力墻抗震性能試驗(yàn)[J];建筑結(jié)構(gòu);2011年02期
6 錢稼茹;江棗;紀(jì)曉東;;高軸壓比鋼管混凝土剪力墻抗震性能試驗(yàn)研究[J];建筑結(jié)構(gòu)學(xué)報(bào);2010年07期
7 鐘樹生;郭洋;周浩;;不同軸壓比框支短肢剪力墻轉(zhuǎn)換結(jié)構(gòu)實(shí)驗(yàn)研究[J];中國新技術(shù)新產(chǎn)品;2010年02期
8 柳炳康,施法科,劉海濤,歐國浩;反復(fù)荷載下預(yù)壓裝配式框架接合部受力性能[J];合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年01期
9 滕智明,鄒離湘;反復(fù)荷載下鋼筋混凝土構(gòu)件的非線性有限元分析[J];土木工程學(xué)報(bào);1996年02期
相關(guān)碩士學(xué)位論文 前9條
1 王召新;混凝土裝配式住宅施工技術(shù)研究[D];北京工業(yè)大學(xué);2012年
2 鄭海;預(yù)制預(yù)應(yīng)力剪力墻抗震性能試驗(yàn)研究與ABAQUS分析[D];山東建筑大學(xué);2011年
3 彭媛媛;預(yù)制鋼筋混凝土剪力墻抗震性能試驗(yàn)研究[D];清華大學(xué);2010年
4 喬問釗;預(yù)制預(yù)應(yīng)力混凝土一字型剪力墻抗震性能研究[D];山東建筑大學(xué);2010年
5 周浩;不同軸壓比框支短肢剪力墻斜柱式轉(zhuǎn)換層結(jié)構(gòu)的抗震試驗(yàn)研究[D];重慶大學(xué);2009年
6 侯峰;基于ABAQUS的鋼管混凝土鋼板剪力墻靜力性能分析研究[D];汕頭大學(xué);2009年
7 鐘永慧;不同軸壓比框支剪力墻加腋梁式轉(zhuǎn)換結(jié)構(gòu)抗震試驗(yàn)研究[D];重慶大學(xué);2007年
8 朱洪進(jìn);預(yù)制預(yù)應(yīng)力混凝土裝配整體式框架結(jié)構(gòu)(世構(gòu)體系)節(jié)點(diǎn)試驗(yàn)研究[D];東南大學(xué);2006年
9 戚春坡;免拆模板及其剪力墻體系抗震性能研究[D];河北工業(yè)大學(xué);2004年
,本文編號:2176714
本文鏈接:http://sikaile.net/jingjilunwen/jianzhujingjilunwen/2176714.html