武漢市深隧工程環(huán)境影響評(píng)價(jià)及其防澇與控污功效分析
本文選題:排水深隧 + SWMM; 參考:《武漢理工大學(xué)》2015年碩士論文
【摘要】:當(dāng)城區(qū)地表覆蓋已基本定型,城市道路地下空間已被多種管線(xiàn)占據(jù),如規(guī)劃進(jìn)一步增加城區(qū)的排水能力或?qū)⒎稚⒌奈鬯幚韽S(chǎng)外遷歸一,在地表淺層長(zhǎng)距離開(kāi)挖埋設(shè)巨型管道的方案往往難以實(shí)施。國(guó)外的排水管網(wǎng)建設(shè)經(jīng)驗(yàn)表明,排水深隧是較好的替代方案,國(guó)內(nèi)在該方面的研究和應(yīng)用才剛剛起步。旨在解決排澇問(wèn)題、控制面源污染、將武昌地區(qū)的幾個(gè)污水廠(chǎng)從中心城區(qū)外遷集中處理,武漢市規(guī)劃在漢口和武昌地區(qū)分別建設(shè)一條排水深隧。鑒于該深隧工程相對(duì)于一般市政設(shè)施而言有其特殊性且具有地區(qū)特性,有必要對(duì)武漢深隧項(xiàng)目進(jìn)行環(huán)境影響分析,并通過(guò)模擬對(duì)深隧工程的排澇及控污效能進(jìn)行定量分析。本論文主要進(jìn)行了下列幾個(gè)方面的研究工作:(1)結(jié)合武漢市深隧工程的特點(diǎn),對(duì)其在施工及運(yùn)行期間產(chǎn)生的廢水、廢氣、噪聲、固體廢物等污染源的成因以及深隧對(duì)地面建筑物、水土流失、社會(huì)環(huán)境可能產(chǎn)生的危害進(jìn)行預(yù)測(cè)分析,并提出了相應(yīng)的環(huán)保措施。(2)對(duì)武昌地區(qū)內(nèi)澇較為嚴(yán)重的羅家港片區(qū)的排水系統(tǒng)及其深隧進(jìn)行了SWMM模型概化,并對(duì)模型參數(shù)、雨型參數(shù)進(jìn)行了屬地化。模擬結(jié)果表明:對(duì)規(guī)劃的淺層系統(tǒng)而言,羅家港片區(qū)可應(yīng)對(duì)P=5a不同降雨歷時(shí)及P=10a短降雨歷時(shí)(T=60min)的暴雨不至于產(chǎn)生嚴(yán)重內(nèi)澇;對(duì)規(guī)劃的淺層系統(tǒng)進(jìn)一步改造后,羅家港片區(qū)內(nèi)澇程度有所改善,但仍難應(yīng)對(duì)P=10a長(zhǎng)降雨歷時(shí)(T=180min)的暴雨;在改造規(guī)劃淺層系統(tǒng)的基礎(chǔ)上增設(shè)深隧后,可抵御P=30a短降雨歷時(shí)暴雨(T=60、120min),但對(duì)應(yīng)長(zhǎng)降雨歷時(shí)的暴雨,該地區(qū)仍有數(shù)個(gè)漬水點(diǎn)。(3)對(duì)羅家港片區(qū)SWMM模型中的水質(zhì)參數(shù)進(jìn)行了確定,將污水深隧的兩個(gè)入流豎井視作合流制系統(tǒng)溢流污水截留井,模擬得到了不同截流倍數(shù)時(shí)合流區(qū)的截污比及污染物去除比,得到了該地區(qū)的最佳截流倍數(shù)為3.0。(4)對(duì)漢口深隧及其服務(wù)的淺層排水系統(tǒng)及其深隧進(jìn)行了SWMM模型概化,并對(duì)模型參數(shù)、雨型參數(shù)進(jìn)行了屬地化;假定深隧采用等管徑,對(duì)不同重現(xiàn)期、不同降雨歷時(shí)條件下的漬水情況進(jìn)行模擬分析,對(duì)比分析不同深隧直徑時(shí)的漬水總量、漬水量分別大于5000m3和10000m3的漬水點(diǎn)數(shù)、漬水時(shí)長(zhǎng)分別大于0.5h和1h的漬水點(diǎn)數(shù),結(jié)果表明對(duì)漢口地區(qū)而言,在現(xiàn)有淺層系統(tǒng)條件下,最優(yōu)深隧直徑為8m。本文對(duì)武漢深隧工程進(jìn)行了環(huán)境影響分析,提出了基于SWMM的防澇效能分析、面源控制截流倍數(shù)優(yōu)選、深隧直徑優(yōu)化的方法,針對(duì)武漢深隧工程所取得的研究結(jié)論對(duì)其工程設(shè)計(jì)具有借鑒作用。
[Abstract]:When the surface coverage of urban areas has basically been finalized, the underground space of urban roads has been occupied by a variety of pipelines, such as planning to further increase the drainage capacity of urban areas or to relocate decentralized sewage treatment plants out of the city. It is difficult to implement the scheme of laying giant pipeline in shallow long distance excavation. Foreign experience of drainage pipe network construction shows that deep tunnel drainage is a better alternative, and the domestic research and application in this field has just started. In order to solve the problem of waterlogging and control non-point source pollution, several sewage plants in Wuchang area were transferred from the central urban area to centralized treatment. Wuhan city plans to build a drainage tunnel in Hankou and Wuchang area respectively. In view of the particularity and regional characteristics of the deep tunnel project compared with the general municipal facilities, it is necessary to carry out environmental impact analysis on Wuhan deep tunnel project and to quantitatively analyze the drainage and pollution control efficiency of the deep tunnel project through simulation. This paper mainly carries on the following several aspects of research work: 1) combined with the characteristics of Wuhan deep tunnel project, the causes of pollution sources such as waste water, exhaust gas, noise, solid waste produced during construction and operation, as well as the deep tunnel to ground buildings, are analyzed. The potential hazards of soil erosion and social environment are forecasted and analyzed, and the corresponding environmental protection measures are put forward. The drainage system and its deep tunnel in Luojiagang area, where the waterlogging is more serious in Wuchang area, are generalized by SWMM model, and the model parameters are also given. The rain-type parameters were localized. The simulation results show that, for the planned shallow layer system, the Luojiagang area can cope with the heavy rain with different rainfall duration of 5 years and short rainfall duration of 10 years with 60 mins. The degree of waterlogging in Luojiagang area has been improved, but it is still difficult to cope with the heavy rain of 10 years long rainfall duration and 180 min. After adding deep tunnel on the basis of reconstruction and planning of shallow layer system, it can resist the heavy rain with short rainfall duration of 30 years (TX 60120 mins), but it corresponds to the rainstorm with long rainfall duration. The water quality parameters in SWMM model of Luojiagang area are determined by several waterlogging points in this area. The two inflow shafts in the sewage deep tunnel are regarded as overflow sewage interception wells in the combined flow system. The pollution interception ratio and pollutant removal ratio in the confluence area are obtained by simulation. The optimal closure ratio is 3.0.40) the SWMM model of Hankou deep tunnel and its service shallow drainage system and its deep tunnel are generalized by SWMM model. The model parameters and rain type parameters are localized, and the waterlogging conditions under different recurrence periods and different rainfall duration are simulated and analyzed, and the total waterlogging under different tunnel diameters is compared and analyzed, assuming that the tunnel adopts equal pipe diameter, and the waterlogging conditions under different recurrence periods and different rainfall duration are simulated and analyzed. The waterlogging water quantity is larger than the waterlogging points of 5000m3 and 10000m3, and the waterlogging duration is more than 0.5h and 1h, respectively. The results show that the optimum depth tunnel diameter is 8m under the existing shallow system conditions in Hankou area. In this paper, the environmental impact analysis of Wuhan deep tunnel project is carried out, and the method of waterlogging effectiveness analysis based on SWMM, the optimal selection of non-point source control flow closure multiple, and the optimization of deep tunnel diameter are put forward. The conclusions obtained from Wuhan Deep Tunnel Project can be used for reference in the design of Wuhan Deep Tunnel Project.
【學(xué)位授予單位】:武漢理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:X820.3;TU992
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 林文杰;趙俊鳳;吳慧英;;東濠涌深隧工程對(duì)初雨污染的減排效果初探[J];人民珠江;2014年05期
2 朱培根;劉軍;徐萬(wàn)里;涂江峰;田義龍;;城市隧道運(yùn)行環(huán)境能效評(píng)價(jià)實(shí)驗(yàn)與理論研究[J];土木建筑與環(huán)境工程;2013年S1期
3 黃金良;林杰;杜鵬飛;;城市降雨徑流模擬的參數(shù)不確定性分析[J];環(huán)境科學(xué);2012年07期
4 陳惠芳;陳廣峰;程千元;夏世龍;李利俠;洪敏;喬宏霞;;盾構(gòu)穿越淤泥質(zhì)軟土含高壓沼氣地層的安全措施[J];施工技術(shù);2012年13期
5 馬俊花;李婧菲;徐一劍;劉廣奇;李迎霞;;暴雨管理模型(SWMM)在城市排水系統(tǒng)雨季溢流問(wèn)題中的應(yīng)用[J];凈水技術(shù);2012年03期
6 梁學(xué)功;趙海珍;;強(qiáng)化生態(tài)影響評(píng)價(jià) 提高環(huán)境評(píng)價(jià)質(zhì)量——《環(huán)境影響評(píng)價(jià)技術(shù)導(dǎo)則 生態(tài)影響》解讀[J];環(huán)境保護(hù);2011年15期
7 李海燕;岳利濤;黃延;;SWMM中典型水質(zhì)參數(shù)值確定方法的研究[J];給水排水;2011年S1期
8 戴憂(yōu)華;郭忠印;馬艷;倪洪亮;;高速公路隧道運(yùn)行環(huán)境安全評(píng)價(jià)指標(biāo)[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年08期
9 王越興;;SWMM在城市排水管網(wǎng)分析中的應(yīng)用[J];給水排水;2010年S1期
10 黃金良;涂振順;杜鵬飛;李青生;林杰;楊龍奇;;城市綠地降雨徑流污染特征對(duì)比研究:以澳門(mén)與廈門(mén)為例[J];環(huán)境科學(xué);2009年12期
相關(guān)碩士學(xué)位論文 前4條
1 楊勇;設(shè)計(jì)暴雨條件下城市非點(diǎn)源污染負(fù)荷分析[D];天津大學(xué);2007年
2 謝瑩瑩;城市排水管網(wǎng)系統(tǒng)模擬方法和應(yīng)用[D];同濟(jì)大學(xué);2007年
3 江曄;截流干管截流倍數(shù)的環(huán)境與經(jīng)濟(jì)效益分析研究[D];湖南大學(xué);2006年
4 李耐霞;歌樂(lè)山隧道施工過(guò)程對(duì)水環(huán)境影響研究[D];西南交通大學(xué);2004年
,本文編號(hào):1852227
本文鏈接:http://sikaile.net/jingjilunwen/jianzhujingjilunwen/1852227.html