大跨度鋼屋蓋施工全過程數(shù)值模擬與施工監(jiān)控
本文選題:大跨度空間鋼結(jié)構(gòu) 切入點:數(shù)值模擬 出處:《武漢理工大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:近年來,大跨度空間結(jié)構(gòu)的應(yīng)用越來越廣泛,國內(nèi)外許多造型獨特、結(jié)構(gòu)復(fù)雜的大跨度空間建筑拔地而起,由于大跨度空間結(jié)構(gòu)在整個施工過程中的受力非常復(fù)雜,需要對整個施工過程進(jìn)行數(shù)值計算,并對施工過程進(jìn)行安全控制。某體育館跨度大、凈空高、造型復(fù)雜,因此在施工過程中,存在一定的安全隱患,需對其施工過程進(jìn)行分析和計算。體育館鋼屋蓋是一個近似圓形的結(jié)構(gòu),由主次桁架拼接而成,部分桁架中心位置下部設(shè)有臨時支撐。本文以該體育館鋼屋蓋結(jié)構(gòu)的施工過程為實際工程背景,對其安裝過程和臨時支撐拆除過程進(jìn)行研究。本文的主要研究內(nèi)容和結(jié)論如下:1、根據(jù)實際施工過程進(jìn)行有限元數(shù)值計算,計算分析結(jié)果表明:鋼屋蓋臨時支撐拆除以后,鋼屋蓋最大位移值為-28.4mm,最大等效應(yīng)力為81.7MPa;臨時支撐拆除前后,結(jié)構(gòu)的應(yīng)力值和變形值均維持在一個安全的范圍內(nèi)。2、對部分組成鋼屋蓋的關(guān)鍵桁架同一斷面處上弦、下弦位置處的位移計算數(shù)據(jù)進(jìn)行分析,對各個桁架的受力特點和規(guī)律進(jìn)行分析,結(jié)果表明:整體鋼屋蓋以各桁架中心為對稱位置,從桁架兩端向桁架中心位置收縮,并伴隨相應(yīng)的扭轉(zhuǎn),整個鋼屋蓋的扭轉(zhuǎn)量、東西方向變形量以及南北方向變形量均較小。3、根據(jù)數(shù)值計算的結(jié)果,制定詳細(xì)的監(jiān)測方案,并對整個施工過程的監(jiān)測數(shù)據(jù)進(jìn)行分析,在臨時支撐卸載前后結(jié)構(gòu)部分測點的應(yīng)力和位移發(fā)生突變,大多數(shù)測點的應(yīng)力和位移值在各自方向上均呈增大的趨勢,其中最大應(yīng)力監(jiān)測值為-62.3MPa,最大豎向變形為-25mm,且維持在一個平穩(wěn)的范圍內(nèi)。上弦桿主要承受壓應(yīng)力的影響,而腹桿的受力較為復(fù)雜,壓應(yīng)力和拉應(yīng)力分布比較平衡,下弦桿主要承受拉應(yīng)力的影響,臨時支撐在整個施工過程中受壓。4、對實際監(jiān)測數(shù)據(jù)和理論數(shù)據(jù)進(jìn)行對比分析,數(shù)據(jù)吻合較好。通過對以上內(nèi)容的研究,體育館鋼屋蓋在整個施工過程中,結(jié)構(gòu)的變形遠(yuǎn)小于相關(guān)規(guī)范[46]要求的允許變形L/500(L=67.2m),結(jié)構(gòu)實際的最大應(yīng)力只有材料強(qiáng)度設(shè)計值的29%(Q235鋼材強(qiáng)度設(shè)計值為215MPa)。結(jié)果表明體育館鋼屋蓋的施工過程是合理有效的,且選用數(shù)值計算和實時監(jiān)測的方法也是科學(xué)的,研究方法和結(jié)果可為類似工程的施工模擬和實時監(jiān)測提供指導(dǎo)和參考。
[Abstract]:In recent years, the application of long-span spatial structure is more and more extensive. Many long-span spatial buildings with unique shape and complex structure have emerged at home and abroad, because the force of long-span spatial structure in the whole construction process is very complex. It is necessary to carry out numerical calculation and safety control of the whole construction process. A gymnasium has a large span, high clearance and complex shape, so there are some hidden dangers in the construction process. It is necessary to analyze and calculate the construction process. The steel roof of the gymnasium is an approximate circular structure, which is composed of the primary and secondary truss. There is temporary support in the lower part of the truss center. This paper takes the construction process of the steel roof structure of the gymnasium as the practical engineering background. The main contents and conclusions of this paper are as follows: 1. According to the actual construction process, the finite element numerical calculation is carried out. The results show that: after the steel roof temporary bracing is removed, The maximum displacement of steel roof is -28.4 mm and the maximum equivalent stress is 81.7 MPa. Before and after the temporary bracing is removed, the stress value and deformation value of the structure are maintained in a safe range of 0.2. The displacement calculation data at the lower chord position are analyzed, and the stress characteristics and rules of each truss are analyzed. The results show that the integral steel roof takes the center of each truss as the symmetrical position and shrinks from the two ends of the truss to the central position of the truss. With the corresponding torsion, the torsion of the whole steel roof, the deformation in the east and west direction and the deformation in the north and south direction are smaller. According to the results of numerical calculation, the detailed monitoring scheme is made, and the monitoring data of the whole construction process are analyzed. The stress and displacement of some measuring points of the structure changed suddenly before and after the temporary support was unloaded, and the stress and displacement values of most of the measured points showed an increasing trend in their respective directions. The maximum stress monitoring value is -62.3MPa, the maximum vertical deformation is -25mm, and the maximum vertical deformation is kept in a stable range. The upper chord mainly bears the influence of compressive stress, while the web bar is more complicated, and the distribution of compressive stress and tensile stress is more balanced. The lower chord is mainly affected by tensile stress, and the temporary support is under pressure during the whole construction process. Comparing and analyzing the actual monitoring data and the theoretical data, the data are in good agreement. The steel roof of the gymnasium was built during the whole construction. The deformation of the structure is much smaller than that of the allowable deformation L / 500 / L ~ (67.2mg) required by the relevant code [46], and the actual maximum stress of the structure is only 29m Q235 steel strength design value of the material strength design value. The results show that the construction process of the Gymnasium steel roof is reasonable and effective. It is also scientific to select the methods of numerical calculation and real-time monitoring. The research methods and results can provide guidance and reference for the construction simulation and real-time monitoring of similar projects.
【學(xué)位授予單位】:武漢理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TU758.11
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李正華;邱小軍;周元;孫鋒;;大懸挑結(jié)構(gòu)臨時支撐卸載施工技術(shù)[J];建筑鋼結(jié)構(gòu)進(jìn)展;2012年05期
2 李思璐;任珉;葉茂;吳玖榮;;廣州國際體育演藝中心鋼屋蓋支撐卸載模擬分析及監(jiān)控[J];廣州大學(xué)學(xué)報(自然科學(xué)版);2011年04期
3 劉學(xué)武;郭彥林;郭宇飛;;千斤頂單元法在大跨度鋼屋蓋拆撐過程數(shù)值模擬中的應(yīng)用[J];施工技術(shù);2010年08期
4 錢稼茹;張微敬;趙作周;潘鵬;仲叢利;蔣千重;;北京大學(xué)體育館鋼屋蓋施工模擬與監(jiān)測[J];土木工程學(xué)報;2009年09期
5 婁峰;范曉偉;董蘇洲;;惠州體育場鋼結(jié)構(gòu)罩棚卸載方案探討[J];建筑結(jié)構(gòu);2009年S1期
6 劉學(xué)武;郭彥林;張慶林;劉祿宇;;CCTV新臺址主樓施工過程結(jié)構(gòu)內(nèi)力和變形分析[J];工業(yè)建筑;2007年09期
7 郭彥林;劉學(xué)武;;大型復(fù)雜鋼結(jié)構(gòu)施工力學(xué)問題及分析方法[J];工業(yè)建筑;2007年09期
8 范重;王U,
本文編號:1624877
本文鏈接:http://sikaile.net/jingjilunwen/jianzhujingjilunwen/1624877.html