超深地下連續(xù)墻鋼筋籠吊裝施工計(jì)算方法研究
本文關(guān)鍵詞: 地下連續(xù)墻 鋼筋籠 整體吊裝 簡(jiǎn)化計(jì)算 出處:《武漢理工大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著社會(huì)生產(chǎn)力的發(fā)展,大型深基坑工程越來(lái)越多,在大型地下工程中多采用地下連續(xù)墻施工技術(shù),而鋼筋籠吊裝作為地連墻施工技術(shù)控制的重要一環(huán),對(duì)地下連續(xù)墻施工的成敗有著舉足輕重的影響。未來(lái)地連墻鋼筋籠吊裝技術(shù)將隨著超深地連墻技術(shù)的推廣而得到廣泛運(yùn)用。對(duì)于超深地下連續(xù)墻鋼筋籠的吊裝,以往常常采用分段制作、吊裝就位、分段連接的方式進(jìn)行,其安全性比較好,但是效率低,成本高,且空中焊接質(zhì)量不易得到保證,焊接后垂直度也不易控制。現(xiàn)代施工現(xiàn)場(chǎng),吊裝施工已經(jīng)越來(lái)越多地采用整體一次性吊裝就位的工藝方法,這種方法整體性好、施工周期短,效率高,節(jié)約材料和成本;但是超深基坑地下連續(xù)墻鋼筋籠的整體吊裝有其特殊性,鋼筋籠本身質(zhì)量大,長(zhǎng)度長(zhǎng),單純鋼筋籠的單位剛度很低,吊點(diǎn)處籠體局部受力較大。在吊裝過(guò)程中如果吊點(diǎn)設(shè)置不合理,加固措施不足,鋼筋籠可能會(huì)有很大的縱向撓度,即鋼筋籠頂端和尾端已經(jīng)吊離地面,而鋼筋籠中間部分還在平臺(tái)上,繼續(xù)強(qiáng)行吊裝很容易發(fā)生鋼筋籠散架等安全質(zhì)量事故。同時(shí),鋼筋籠的吊裝受力狀態(tài)與其在地連墻中的受力形式是大不同的。因此,相應(yīng)的吊裝分析和設(shè)計(jì)研究是非常重要的。本研究以現(xiàn)行地下連續(xù)墻施工工藝和現(xiàn)有相關(guān)研究現(xiàn)狀為基礎(chǔ),通過(guò)建立某項(xiàng)目中心主塔樓部分地下連續(xù)墻鋼筋籠的整體有限元模型,對(duì)鋼筋籠吊裝過(guò)程中的整體受力變形性能進(jìn)行分析,研究縱筋、橫筋以及斜向腹筋在參與整體受力變形中的作用;通過(guò)推導(dǎo)偏位吊裝下吊點(diǎn)力與鋼絲繩力的表達(dá)式,對(duì)比偏位吊裝下吊點(diǎn)力、鋼絲繩力和垂直吊裝下的吊點(diǎn)力、鋼絲繩力,來(lái)研究鋼筋籠吊裝過(guò)程中可能會(huì)出現(xiàn)的偏位吊裝的影響;建立梯形腹架和三角形腹架的鋼筋籠模型,通過(guò)對(duì)比兩種腹架受力變形性能,從而在鋼筋籠腹架的設(shè)置上給出一些優(yōu)化建議;在研究了鋼筋籠整體受力變形性能的基礎(chǔ)上,通過(guò)劃分計(jì)算單元,將鋼筋籠從整體結(jié)構(gòu)簡(jiǎn)化為組合腹架;分析組合腹架的特性,通過(guò)選擇分析模型,利用平衡條件以及變形協(xié)調(diào)條件,將組合腹架翼緣桿筋等效為矩形弦桿,實(shí)現(xiàn)組合腹架向平面單片腹架的簡(jiǎn)化;進(jìn)一步分析單片腹架的特性,選擇合適分析模型,實(shí)現(xiàn)單片腹架向單桿的簡(jiǎn)化。
[Abstract]:With the development of social productivity, there are more and more large-scale deep foundation pit projects. Underground continuous wall construction technology is often used in large underground projects, and steel cage hoisting is an important part of the construction technology control. In the future, the hoisting technology of reinforced cage will be widely used along with the extension of the technology of super-deep connecting wall, and the hoisting of reinforcement cage of super-deep diaphragm wall will be widely used. In the past, we often use the way of segmenting, hoisting, and connecting, its safety is good, but the efficiency is low, the cost is high, and the quality of air welding is not easy to be guaranteed. It is not easy to control the perpendicularity after welding. In modern construction site, lifting construction has been used more and more one-off hoisting position, this method has good integrity, short construction period and high efficiency. Saving materials and costs; However, the integral hoisting of reinforcement cage of underground continuous wall of ultra-deep foundation pit has its particularity. The reinforcement cage itself has large quality, long length, and the unit stiffness of simple steel cage is very low. In the process of hoisting, if the hoisting point is not reasonable and the reinforcement measures are insufficient, the reinforcement cage may have a great longitudinal deflection, that is, the top and the tail end of the steel cage have been hoisted off the ground. And the middle part of the steel cage is still on the platform. It is easy to happen the safety and quality accidents such as the reinforcement cage loose frame and so on. At the same time. The loading state of steel cage hoisting is different from the force form of reinforcement cage in the ground connecting wall. The research on hoisting analysis and design is very important. This research is based on the current construction technology of underground continuous wall and the current research status. Through the establishment of the integral finite element model of the steel cage of the underground continuous wall of the main tower building of a project, the deformation behavior of the steel cage during the hoisting process is analyzed, and the longitudinal reinforcement is studied. The role of transverse tendons and oblique web tendons in the deformation of the whole body; By deducing the expressions of the lifting point force and the wire rope force, the paper compares the lifting point force, the wire rope force and the vertical lifting point force and the wire rope force. To study the influence of skew hoisting in the process of steel cage hoisting. The reinforcement cage model of trapezoidal web frame and triangular web frame is established, and some optimization suggestions are given by comparing the deformation behavior of the two kinds of web frame. On the basis of studying the mechanical and deformation behavior of the whole steel cage, the reinforcement cage is simplified from the integral structure to the composite web frame by dividing the calculation elements. The characteristics of the combined web frame are analyzed. By selecting the analysis model and using the balance condition and the deformation coordination condition, the flange bar bar of the combined web frame is equivalent to the rectangular chord bar, which can simplify the combined web frame to the plane single web frame. Further analysis of the characteristics of the single-piece web frame, the selection of appropriate analysis model to achieve the simplification of the single-bar of the single-piece web frame.
【學(xué)位授予單位】:武漢理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TU753
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黎慶雄;;金融島站地下連續(xù)墻鋼筋籠整體吊裝技術(shù)研究[J];廣東建材;2014年12期
2 章洪俊;金凱;;高重型地連墻鋼筋籠雙機(jī)抬吊施工技術(shù)[J];城市道橋與防洪;2014年11期
3 汪俊;;超大超重地下連續(xù)墻鋼筋籠吊裝設(shè)計(jì)與驗(yàn)算[J];鐵道建筑技術(shù);2014年S1期
4 張革軍;;超深超重地下連續(xù)墻鋼筋籠整體吊裝技術(shù)[J];市政技術(shù);2014年S1期
5 趙超;余劍鋒;;超深地下連續(xù)墻L型鋼筋籠吊裝技術(shù)[J];廣東土木與建筑;2014年02期
6 張躍;;地下連續(xù)墻L型鋼筋籠吊裝施工工藝[J];廣州建筑;2014年01期
7 張紫月;丁克勝;邵強(qiáng);;超深地下連續(xù)墻鋼筋籠吊裝過(guò)程的仿真研究[J];中國(guó)建筑金屬結(jié)構(gòu);2013年16期
8 車國(guó)喜;;超深地連墻鋼筋籠吊裝方案設(shè)計(jì)與應(yīng)用[J];中華民居(下旬刊);2013年07期
9 楊寶珠;邵強(qiáng);丁克勝;張淑朝;徐長(zhǎng)領(lǐng);;超深、超大地下連續(xù)墻鋼筋籠吊裝過(guò)程研究[J];工業(yè)建筑;2013年07期
10 楊天鴻;;地下連續(xù)墻鋼筋籠滑吊骨架承載力驗(yàn)算[J];鐵道建筑;2013年06期
,本文編號(hào):1451349
本文鏈接:http://sikaile.net/jingjilunwen/jianzhujingjilunwen/1451349.html