智能樓宇VAV變風(fēng)量空調(diào)系統(tǒng)控制
本文關(guān)鍵詞:智能樓宇VAV變風(fēng)量空調(diào)系統(tǒng)控制 出處:《天津大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 智能建筑 VAV 空調(diào)系統(tǒng) 神經(jīng)網(wǎng)絡(luò) PID控制 解耦控制
【摘要】:近年來,我國的智能建筑發(fā)展迅猛,但隨之而帶來的巨大能源消耗問題已經(jīng)開始引發(fā)關(guān)注?照{(diào)系統(tǒng)作為智能建筑的重要組成部分,也是其能耗的重要來源之一。在全球環(huán)境污染和能源危機的環(huán)境下,如何實現(xiàn)空調(diào)的節(jié)能,降低污染,已成為急待研究的課題。因此在要求開源節(jié)流的今天,提高設(shè)備及系統(tǒng)效能是最易實現(xiàn)的方式。而VAV(Variable Air Volume,變風(fēng)量)空調(diào)系統(tǒng)正以其舒適、節(jié)能和極大的靈活性開始被廣泛的應(yīng)用于空調(diào)系統(tǒng)內(nèi),并逐步成為空調(diào)系統(tǒng)的主流。但VAV空調(diào)系統(tǒng)在我國的使用并未能達到預(yù)期效果,除了一部分工程方面以及使用者的背景和習(xí)慣有關(guān)外,由于VAV系統(tǒng)本身的強耦合性、多變量及非線性特征,容易造成系統(tǒng)運行的不穩(wěn)定,在控制及管理上具有一定的難度,而被劣質(zhì)了的控制效果,對整個系統(tǒng)的普及和應(yīng)用造成了一定的影響。變風(fēng)量空調(diào)系統(tǒng)屬于全空氣空調(diào)系統(tǒng),具有節(jié)能和舒適的特點,但依舊需要合理有效的控制方法來保證其節(jié)能效果及運行的穩(wěn)定。但由于其功能復(fù)雜,傳統(tǒng)的控制方法和現(xiàn)代控制法都很難滿足要求,這就需要借助現(xiàn)代的智能控制來實現(xiàn)系統(tǒng)最優(yōu)化的運行。因此,引入先進的神經(jīng)網(wǎng)絡(luò)智能控制技術(shù)的課題就變得尤為重要而且更具有研究的價值。本文從工程實例的VAV項目展開研究,通過收集調(diào)試參數(shù),針對現(xiàn)階段的工程變風(fēng)量系統(tǒng)的運行不穩(wěn)定,VAV系統(tǒng)的多變耦合特性展開相關(guān)的研究,繼而得出基于神經(jīng)網(wǎng)絡(luò)解耦的VAV系統(tǒng)控制方案。在解耦基礎(chǔ)上更深層次地完成了神經(jīng)元自適應(yīng)PID控制器設(shè)計。同時,運用傳統(tǒng)PID控制算法參數(shù)確定控制器權(quán)值的最初值。并通過MATLAB平臺實施空調(diào)系統(tǒng)末端控制仿真研究。證實了該控制法有著顯著的優(yōu)越性,能滿足節(jié)能和舒適度要求,具有良好控制效果。最后,從一個工程實例出發(fā),介紹了一個廠商的VAV末端控制系統(tǒng),并對實現(xiàn)方式進行探討。
[Abstract]:In recent years, the intelligent building in our country has developed rapidly, but the huge energy consumption problem has started to arouse the attention. As an important part of the intelligent building, the air conditioning system is an important part of the intelligent building. In the environment of global environmental pollution and energy crisis, how to realize the energy saving of air conditioning and reduce pollution has become an urgent research topic. Improving the efficiency of equipment and systems is the easiest way to achieve this, and the VAV(Variable Air Volume) air conditioning system is being comfortable. Energy conservation and great flexibility began to be widely used in air conditioning systems, and gradually become the mainstream of air conditioning systems, but the use of VAV air conditioning system in China has not achieved the desired results. In addition to a part of the engineering and user background and habits of the VAV system due to its strong coupling, multivariable and nonlinear characteristics, it is easy to cause instability of the system. There are some difficulties in the control and management, but the poor control effect has a certain impact on the popularization and application of the whole system. The VAV air conditioning system belongs to the whole air conditioning system. It has the characteristics of energy saving and comfort, but it still needs reasonable and effective control methods to ensure its energy-saving effect and operation stability. However, because of its complex functions, the traditional control methods and modern control methods are difficult to meet the requirements. This requires the use of modern intelligent control to achieve the optimal operation of the system. The introduction of advanced neural network intelligent control technology has become particularly important and more valuable. This paper starts the research from the VAV project of engineering example and collects the debugging parameters. This paper focuses on the variable coupling characteristics of the VAV system under the unstable operation of the engineering VAV system at the present stage. Then the control scheme of VAV system based on neural network decoupling is obtained. The neural adaptive PID controller is designed on the basis of decoupling. At the same time. The parameters of the traditional PID control algorithm are used to determine the initial value of the controller weight, and the simulation research on the terminal control of the air conditioning system is carried out through the MATLAB platform. It is proved that the control method has obvious advantages. It can meet the requirements of energy saving and comfort, and has good control effect. Finally, starting from an engineering example, this paper introduces a manufacturer's VAV terminal control system, and discusses the realization method.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TU855;TU831
【參考文獻】
相關(guān)期刊論文 前8條
1 舒懷林,郭秀才;多變量強耦合時變系統(tǒng)的PID神經(jīng)網(wǎng)絡(luò)控制[J];工礦自動化;2003年05期
2 陳益武,繆小平,張虎;略論變風(fēng)量空調(diào)系統(tǒng)[J];工程設(shè)計CAD與智能建筑;2001年07期
3 葉大法,楊國榮,胡仰耆;上海地區(qū)變風(fēng)量空調(diào)系統(tǒng)工程調(diào)研與展望[J];暖通空調(diào);2000年06期
4 舒懷林;PID神經(jīng)元網(wǎng)絡(luò)對強耦合帶時延多變量系統(tǒng)的解耦控制[J];控制理論與應(yīng)用;1998年06期
5 李克欣,葉大法,楊國榮,吳純舉,壽煒煒,張力;VAV 空調(diào)系統(tǒng)初探[J];暖通空調(diào);1997年03期
6 劉國榮;多變量系統(tǒng)模糊解耦自適應(yīng)控制[J];控制理論與應(yīng)用;1997年02期
7 李明忠,王福利;基于遞歸神經(jīng)網(wǎng)絡(luò)的一類非線性無模型系統(tǒng)的自適應(yīng)控制[J];控制與決策;1997年01期
8 王寧,涂健,陳錦江;自適應(yīng)神經(jīng)元控制系統(tǒng)的理論分析[J];華中理工大學(xué)學(xué)報;1993年04期
相關(guān)碩士學(xué)位論文 前1條
1 李小宇;基于神經(jīng)網(wǎng)絡(luò)的VAV空調(diào)控制系統(tǒng)設(shè)計[D];上海交通大學(xué);2011年
,本文編號:1420537
本文鏈接:http://sikaile.net/jingjilunwen/jianzhujingjilunwen/1420537.html