混凝土結(jié)構(gòu)防腐蝕襯膜的設(shè)計(jì)、制備及其性能研究
本文關(guān)鍵詞:混凝土結(jié)構(gòu)防腐蝕襯膜的設(shè)計(jì)、制備及其性能研究 出處:《武漢理工大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: FRP 功能橋接 防腐蝕 粘結(jié)性能 耐久性
【摘要】:纖維增強(qiáng)樹脂基復(fù)合材料(FRP)因具有強(qiáng)度高、耐腐蝕和疲勞性能好的特點(diǎn),被廣泛應(yīng)用于混凝土結(jié)構(gòu)的加固和防腐蝕工程。基于FRP材料,從預(yù)制構(gòu)件和有效粘結(jié)出發(fā),本文提出了混凝土結(jié)構(gòu)表面襯膜技術(shù),通過在FRP基體材料上集成功能橋接材料制備得到糙化FRP襯膜(roughing FRP sheet,RFS)。與傳統(tǒng)的表面涂層和FRP應(yīng)用技術(shù)相比,無(wú)需表面處理和膠黏劑即可實(shí)現(xiàn)FRP材料與混凝土結(jié)構(gòu)有效地粘結(jié),發(fā)揮防腐蝕作用。本文對(duì)RFS的粘結(jié)性能和耐久性能進(jìn)行了系統(tǒng)的研究,對(duì)RFS的施工裝配及修補(bǔ)技術(shù)進(jìn)行了初步的探索。RFS的構(gòu)造深度和粘結(jié)強(qiáng)度隨橋接材料粒徑的增加而增大,以粒徑為3.15~4.75mm的900級(jí)輕集料制備的RFS粘結(jié)性能最佳,與混凝土表層平均粘結(jié)強(qiáng)度達(dá)到2.17MPa。RFS與混凝土表層主要由機(jī)械嚙合和界面結(jié)構(gòu)效應(yīng)協(xié)同粘結(jié),采用多孔結(jié)構(gòu)的橋接材料既減輕了自重,達(dá)到輕質(zhì)化的目的,同時(shí)可以與水泥石及FRP互穿嚙合。當(dāng)橋接材料和混凝土強(qiáng)度等級(jí)一定時(shí),RFS與混凝土表層粘結(jié)強(qiáng)度與橋接材料粒徑、集成密度、容積率等參數(shù)有關(guān),平均粘結(jié)失效力可表述為F=K1hsp+K2D50+K3。采用硅烷偶聯(lián)劑(Silane coupling agent,SCA)作為界面劑來增強(qiáng)RFS與混凝土之間的粘結(jié)質(zhì)量。結(jié)果表明,SCA可調(diào)控輕集料吸水率,適宜濃度的SCA可優(yōu)化界面區(qū)組成和結(jié)構(gòu),提高粘結(jié)強(qiáng)度、機(jī)械強(qiáng)度及界面區(qū)顯微硬度。本文中,當(dāng)SCA溶液濃度為0.05%時(shí),體系性能提升最為明顯。本文評(píng)價(jià)了RFS-混凝土體系在氯離子侵蝕、溫度沖擊、海水干濕循環(huán)、紫外老化及荷載沖擊等環(huán)境作用下的耐久性能。結(jié)果表明,RFS的抗氯離子滲透性能優(yōu)異;在90次溫度沖擊、海水干濕循環(huán)后,RFS外觀無(wú)明顯變化,粘結(jié)強(qiáng)度降低了79.3%和54.8%;經(jīng)過2000h的紫外光照老化后,RFS外觀顏色逐漸加深變黃,粘結(jié)強(qiáng)度降低了59.6%;SCA改善不同環(huán)境作用對(duì)RFS-混凝土體系耐久性影響的效果表現(xiàn)差異,對(duì)溫度沖擊作用基本無(wú)改善效果,對(duì)海水干濕循環(huán)作用改善較為明顯。采用濃度為0.05%的SCA溶液處理試樣,經(jīng)過90次溫度沖擊和海水干濕循環(huán)作用后粘結(jié)強(qiáng)度分別降低了80.4%和34.0%;對(duì)于采取丙烯酸樹脂涂層的試樣,經(jīng)2000h的紫外光照老化后粘結(jié)強(qiáng)度僅降低了28.5%,表明表面涂層可顯著提高RFS-混凝土體系的抗紫外光耐久性能。荷載沖擊結(jié)果表明只有當(dāng)內(nèi)部混凝土被沖擊潰散破裂時(shí),才會(huì)出現(xiàn)RFS與混凝土剝離的情況,而局部破損時(shí),RFS并不會(huì)從混凝土表面剝落。通過實(shí)驗(yàn)室條件下的模擬試驗(yàn),本文提出的施工總體技術(shù)思路是將RFS固定在混凝土模板內(nèi)側(cè),通過澆鑄使其與混凝土粘結(jié)成為一個(gè)整體,當(dāng)外模板拆卸后,即完成RFS的裝配施工。當(dāng)RFS破損后,可采取涂刷樹脂漿液的方式進(jìn)行有效的修補(bǔ)。
[Abstract]:Fiber reinforced resin matrix composites (FRP) because of its high strength, corrosion and fatigue performance, is widely used in reinforced concrete structure and corrosion engineering. Based on the FRP material, starting from prefabricated and effective bond, is proposed in this paper. The concrete structure surface lining membrane technology, through the FRP matrix materials. The integrated function of bridging material was prepared by roughening FRP (roughing FRP sheet, lining film RFS). Compared with the traditional surface coating and FRP application technology, FRP materials and concrete structure effectively bonded without surface treatment and adhesive can play anti corrosion effect. Based on RFS's performance and durability of bonding system research, construction assembly and repair technology of RFS conducted a preliminary exploration of.RFS structure depth and bond strength with the increase of particle size of bridging material increases, the particle size of 3.15 ~4.75mm 900 The best bond performance lightweight aggregate prepared by RFS, and the average bond strength of concrete surface and the concrete surface to 2.17MPa.RFS mainly by mechanical engagement and interface structure of the synergistic effect of bonding, the bridging material with porous structure can reduce the weight, achieve the purpose of light, with cement and FRP interpenetrating mesh at the same time. When the bridge materials and concrete strength grade is RFS and the concrete surface bonding strength and bridging material particle size, integrated density, relevant parameters such as volume rate, average bond failure force can be expressed as F=K1hsp+K2D50+K3. using silane coupling agent (Silane coupling, agent, SCA) as the interface agent to enhance the bonding quality between RFS and concrete. The results show that SCA, adjustable light aggregate water absorption rate, the suitable concentration of SCA can optimize the interface composition and structure, improve the bonding strength, mechanical strength and hardness. The interfacial zone, When the SCA concentration is 0.05%, the system performance is most obvious. This paper evaluates the RFS- system in the chloride ion erosion of concrete, temperature shock, seawater wet dry cycling, durability and load effect of ultraviolet aging impact under the environment of RFS. The results showed that the resistance to penetration of chloride ions in the 90 excellent; temperature shock and the seawater wet dry cycles, the appearance of the RFS had no obvious change, the bond strength decreased by 79.3% and 54.8%; after 2000h UV aging, RFS color gradually become yellow, the bond strength decreased by 59.6%; improve the environment with different SCA effects on RFS- system of concrete durability performance difference, basically no effect the impact of seawater temperature, wet and dry cycle had obvious improvement. The concentration of 0.05% SCA solution samples, after 90 times of thermal shock and seawater wet dry cycle after bond strength respectively. Decreased by 80.4% and 34%; to take samples of acrylic resin coating, the 2000h ultraviolet aging after bond strength decreased only 28.5%, showed that the surface coating can effectively improve the durability of anti UV RFS- concrete system. The results show that only when the impact load inside the concrete impact of collapsibility rupture, RFS occurs with concrete stripping the situation, while the local damage, RFS is not from the surface spalling of concrete. Through laboratory simulation test, the overall idea of construction technology is proposed in this paper is RFS fixed on the concrete template by casting, making it a whole and concrete bond, when the template is removed, to complete the assembly and construction of RFS. When the RFS is damaged, can take the coating resin grout way effective repair.
【學(xué)位授予單位】:武漢理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TU37;TU599
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 豐曙霞;王培銘;LIU Xianping;;SEM-backscattered Electron Imaging and Image Processing for Evaluation of Unhydrated Cement Volume Fraction in Slag Blended Portland Cement Pastes[J];Journal of Wuhan University of Technology(Materials Science Edition);2013年05期
2 王吉忠;張建;;海洋環(huán)境下CFRP-混凝土粘結(jié)性能的試驗(yàn)研究[J];水利與建筑工程學(xué)報(bào);2013年04期
3 王培銘;豐曙霞;劉賢萍;;用于背散射電子圖像分析的水泥漿體拋光樣品制備[J];硅酸鹽學(xué)報(bào);2013年02期
4 李化建;易忠來;謝永江;;混凝土結(jié)構(gòu)表面硅烷浸漬處理技術(shù)研究進(jìn)展[J];材料導(dǎo)報(bào);2012年03期
5 王培銘;豐曙霞;劉賢萍;;背散射電子圖像分析在水泥基材料微觀結(jié)構(gòu)研究中的應(yīng)用[J];硅酸鹽學(xué)報(bào);2011年10期
6 金賢玉;顧祥林;田野;金南國(guó);;混凝土結(jié)構(gòu)服役壽命設(shè)計(jì)的探索與研究進(jìn)展[J];中國(guó)材料進(jìn)展;2009年11期
7 李運(yùn)德;黃玖梅;張軍;;混凝土橋梁結(jié)構(gòu)表面涂層防腐技術(shù)(一)[J];電鍍與涂飾;2008年07期
8 蘇達(dá)根;王小波;;硅烷偶聯(lián)劑對(duì)復(fù)合水泥砂漿性能的影響[J];有機(jī)硅材料;2007年03期
9 李屹立;陸小華;馮玉龍;熊光晶;;花崗巖/硅烷偶聯(lián)劑/水泥漿界面層的形成機(jī)理[J];材料研究學(xué)報(bào);2007年02期
10 蘇達(dá)根;何娟;張京鋒;;硅烷偶聯(lián)劑對(duì)瀝青與石料及水泥膠砂界面的作用[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年02期
相關(guān)博士學(xué)位論文 前3條
1 陳偉;輕集料—基體協(xié)同作用對(duì)混凝土性能的影響[D];重慶大學(xué);2013年
2 胡安妮;荷載和惡劣環(huán)境下FRP增強(qiáng)結(jié)構(gòu)耐久性研究[D];大連理工大學(xué);2007年
3 王發(fā)洲;高性能輕集料混凝土研究與應(yīng)用[D];武漢理工大學(xué);2003年
相關(guān)碩士學(xué)位論文 前10條
1 張建;海洋環(huán)境下CFRP及CFRP-混凝土界面性能的耐久性研究[D];大連理工大學(xué);2013年
2 武玉濤;侵蝕環(huán)境下FRP-混凝土界面的粘結(jié)性能與耐久性能研究[D];哈爾濱工業(yè)大學(xué);2012年
3 王毅;腐蝕環(huán)境中FRP長(zhǎng)期力學(xué)性能研究[D];西安建筑科技大學(xué);2012年
4 馬紅亮;海工混凝土聚脲防護(hù)涂層性能研究[D];青島理工大學(xué);2011年
5 張國(guó)法;基于GECOR 8檢測(cè)信號(hào)的混凝土內(nèi)鋼筋銹蝕定量化分析[D];中南大學(xué);2011年
6 唐進(jìn);大摻量礦物摻合料混凝土抗酸雨侵蝕性能研究[D];中南大學(xué);2009年
7 劉競(jìng);提高海洋構(gòu)筑物混凝土保護(hù)層抗?jié)B抗裂性能的研究[D];中南大學(xué);2008年
8 馮玉龍;硅烷偶聯(lián)劑改性花崗巖骨料與水泥漿作用機(jī)理研究[D];汕頭大學(xué);2007年
9 程智清;高性能頁(yè)巖輕集料混凝土試驗(yàn)研究[D];中南大學(xué);2007年
10 李屹立;花崗巖/硅烷偶聯(lián)劑/水泥漿界面層形成機(jī)理研究[D];汕頭大學(xué);2006年
,本文編號(hào):1418671
本文鏈接:http://sikaile.net/jingjilunwen/jianzhujingjilunwen/1418671.html