鋼筋混凝土梁柱節(jié)點(diǎn)動(dòng)態(tài)力學(xué)性能研究
本文關(guān)鍵詞:鋼筋混凝土梁柱節(jié)點(diǎn)動(dòng)態(tài)力學(xué)性能研究 出處:《大連理工大學(xué)》2015年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 梁柱節(jié)點(diǎn) 加載速率 軸壓比 軟化拉-壓桿模型 有限元分析
【摘要】:受材料率敏感性的影響,鋼筋混凝土構(gòu)件也具有率敏感效應(yīng),其剛度、承載力在不同加載速率水平下均有所不同。然而,以往的研究多集中于混凝土和鋼筋材料率效應(yīng)的研究,有關(guān)梁柱節(jié)點(diǎn)快速加載下的研究相對(duì)較少;谏鲜隹紤],采用位移控制方式加載,對(duì)鋼筋混凝土梁柱節(jié)點(diǎn)開展了動(dòng)態(tài)試驗(yàn),以更好地理解加載速率對(duì)梁柱節(jié)點(diǎn)動(dòng)態(tài)力學(xué)性能的影響。主要研究?jī)?nèi)容總結(jié)如下: (1)根據(jù)鋼筋混凝土結(jié)構(gòu)的延性設(shè)計(jì)準(zhǔn)則,推導(dǎo)了往復(fù)荷載作用下梁截面混凝土受壓區(qū)高度的取值。對(duì)簡(jiǎn)化軟化拉-壓桿模型的斜壓桿傾角、斜壓桿高度、埋置于混凝土內(nèi)鋼筋的屈服應(yīng)力以及軟化系數(shù)進(jìn)行了調(diào)整,對(duì)抗剪通用分析模型的模型系數(shù)和邊節(jié)點(diǎn)類型系數(shù)進(jìn)行了調(diào)整。根據(jù)庫(kù)倫破壞準(zhǔn)則、莫爾圓理論、節(jié)點(diǎn)組合體的受力模型,推導(dǎo)了剪壓復(fù)合受力狀態(tài)下混凝土的抗剪強(qiáng)度計(jì)算模型。此外,運(yùn)用二項(xiàng)式邏輯回歸模型和簡(jiǎn)化軟化拉-壓桿模型分別預(yù)測(cè)了梁柱節(jié)點(diǎn)的破壞形態(tài)以及節(jié)點(diǎn)核心區(qū)裂縫的發(fā)展。 (2)對(duì)比了應(yīng)變率水平不同計(jì)算方法的可行性以及梁柱中節(jié)點(diǎn)抗剪承載力不同計(jì)算公式的合理性,研究了加載速率和軸壓比對(duì)梁柱中節(jié)點(diǎn)動(dòng)態(tài)力學(xué)性能的影響。通過多元線性回歸分析,給出了梁柱中節(jié)點(diǎn)水平抗剪承載力動(dòng)態(tài)增長(zhǎng)因子的經(jīng)驗(yàn)公式。研究結(jié)果表明:隨軸壓比的提高,節(jié)點(diǎn)核心區(qū)斜裂縫與豎向軸力的夾角減;隨加載速率或軸壓比的提高,節(jié)點(diǎn)組合體內(nèi)的裂縫數(shù)量逐漸減少,且梁端塑性鉸區(qū)混凝土損傷加重,節(jié)點(diǎn)核心區(qū)混凝土損傷減弱;節(jié)點(diǎn)組合體的承載力隨加載速率的提高而增大,且屈服荷載的增長(zhǎng)幅度較極限荷載的增長(zhǎng)幅度更明顯;隨加載速率的提高,鋼筋與混凝土之間的黏結(jié)滑移更明顯,但節(jié)點(diǎn)組合體的延性沒有變化;隨加載速率或軸壓比的提高,節(jié)點(diǎn)組合體的剛度退化加劇,耗能增多;簡(jiǎn)單地在擬靜態(tài)設(shè)計(jì)公式中采用鋼筋與混凝土動(dòng)態(tài)強(qiáng)度的方法計(jì)算梁柱中節(jié)點(diǎn)的抗剪承載力是偏于不安全的,往往會(huì)過高估計(jì)梁柱中節(jié)點(diǎn)的抗剪承載力。軸壓比和加載速率對(duì)梁柱邊節(jié)點(diǎn)的力學(xué)性能有類似的影響規(guī)律。 (3)通過有限元分析軟件ABAQUS,采用混凝土損傷塑性模型,可以有效地模擬鋼筋混凝土梁柱節(jié)點(diǎn)在快速加載情況下的應(yīng)變率效應(yīng),數(shù)值分析得到的荷載。位移骨架曲線以及節(jié)點(diǎn)組合體的抗剪承載力與試驗(yàn)結(jié)果基本吻合。此外,配箍率對(duì)鋼筋混凝土梁柱節(jié)點(diǎn)混凝土的損傷程度以及應(yīng)力分布有一定的影響,節(jié)點(diǎn)組合體的屈服荷載和極限荷載均隨節(jié)點(diǎn)核心區(qū)箍筋間距的增大而降低,配箍率減小后,極限荷載的降低幅度較屈服荷載的降低幅度更加明顯。
[Abstract]:Affected by the sensitivity of material rate, reinforced concrete members also have rate-sensitive effect, its stiffness and bearing capacity are different at different loading rate levels. Most of the previous studies focused on the concrete and reinforced material rate effect, but the study of Liang Zhu joint under rapid loading is relatively few. Based on the above considerations, the displacement control method is used to load. In order to better understand the effect of loading rate on the dynamic mechanical properties of reinforced concrete Liang Zhu joints, the main research contents are summarized as follows: 1) according to the ductility design criterion of reinforced concrete structure, the height of concrete compression zone of beam section under reciprocating load is deduced. The yield stress and softening coefficient of the steel bar embedded in concrete are adjusted, the model coefficient and the type coefficient of edge joint of the general analysis model of resisting shear are adjusted. According to the Coulomb failure criterion, the Mohr circle theory is used. In addition, the shear strength calculation model of concrete under shear-compression is derived. By using the binomial logic regression model and the simplified softening tension-compression model, the failure patterns of the beam-column joints and the development of cracks in the core zone of the joints are predicted, respectively. The feasibility of different calculation methods of strain rate level and the rationality of different formulas for calculating the shear capacity of joints in Liang Zhu are compared. The effects of loading rate and axial compression ratio on dynamic mechanical properties of beam-column joints are studied. The empirical formula of dynamic growth factor of horizontal shear bearing capacity of joints in Liang Zhu is given. The results show that the angle between oblique crack and vertical axial force decreases with the increase of axial compression ratio. With the increase of loading rate or axial compression ratio, the number of cracks in the joint decreases gradually, and the damage of concrete in the plastic hinge region of the beam end is aggravated, and the damage of concrete in the core area of the joint is weakened. The bearing capacity of the joint assembly increases with the increase of loading rate, and the increase of yield load is more obvious than that of ultimate load. With the increase of loading rate, the bond slip between steel bar and concrete is more obvious, but the ductility of the joint assembly does not change. With the increase of loading rate or axial compression ratio, the stiffness degradation of the node assembly increases and the energy consumption increases. In the pseudo-static design formula, it is not safe to calculate the shear capacity of beam-column joints by the method of dynamic strength of steel bar and concrete. The shear capacity of Liang Zhu joints is often overestimated, and the axial compression ratio and loading rate have a similar effect on the mechanical properties of Liang Zhu side joints. 3) by using finite element analysis software Abaqus and concrete damage plastic model, the strain rate effect of reinforced concrete beam-column joints under rapid loading can be effectively simulated. The load, displacement skeleton curve and shear bearing capacity of the joint assembly obtained by numerical analysis are in good agreement with the experimental results. The ratio of hoop has a certain influence on the damage degree and stress distribution of the reinforced concrete Liang Zhu joint concrete. The yield load and ultimate load of the joint assembly decrease with the increase of stirrups spacing in the core area of the joint. When the hoop ratio decreases, the reduction of ultimate load is more obvious than that of yield load.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TU375
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳大年,S.T.S.Al-Hassani,尹志華,俞宇穎,沈雄偉;混凝土的沖擊特性描述[J];爆炸與沖擊;2001年02期
2 胡時(shí)勝,王道榮;沖擊載荷下混凝土材料的動(dòng)態(tài)本構(gòu)關(guān)系[J];爆炸與沖擊;2002年03期
3 陳書宇;一種混凝土損傷模型和數(shù)值方法[J];爆炸與沖擊;1998年04期
4 姜芳;陳濤;寧建國(guó);;鋼筋混凝土在沖擊載荷下的動(dòng)態(tài)力學(xué)性能[J];材料工程;2009年03期
5 崔建宇;孫建剛;宋玉普;;鋼筋混凝土框架角節(jié)點(diǎn)抗剪強(qiáng)度試驗(yàn)研究[J];地震工程與工程振動(dòng);2008年05期
6 王德斌;李宏男;;應(yīng)變率對(duì)鋼筋混凝土柱動(dòng)態(tài)特性的影響[J];地震工程與工程振動(dòng);2011年06期
7 呂培印,宋玉普,吳智敏;變速率加載下有側(cè)壓混凝土強(qiáng)度和變形特性[J];大連理工大學(xué)學(xué)報(bào);2001年06期
8 肖詩(shī)云,林皋,王哲,逯靜洲;應(yīng)變率對(duì)混凝土抗拉特性影響[J];大連理工大學(xué)學(xué)報(bào);2001年06期
9 閆東明,林皋,王哲,張勇強(qiáng);不同環(huán)境下混凝土動(dòng)態(tài)直接拉伸特性研究[J];大連理工大學(xué)學(xué)報(bào);2005年03期
10 柳稼航,單新建,尹京苑;遙感圖象自動(dòng)識(shí)別城市震害房屋——以2001年印度庫(kù)奇地震和1976年唐山地震為例[J];地震學(xué)報(bào);2004年06期
相關(guān)博士學(xué)位論文 前2條
1 李敏;材料的率相關(guān)性對(duì)鋼筋混凝土結(jié)構(gòu)動(dòng)力性能的影響[D];大連理工大學(xué);2011年
2 尚世明;普通混凝土多軸動(dòng)態(tài)性能試驗(yàn)研究[D];大連理工大學(xué);2013年
,本文編號(hào):1418587
本文鏈接:http://sikaile.net/jingjilunwen/jianzhujingjilunwen/1418587.html